Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 14-20     DOI: 10.6046/gtzyyg.2015.04.03
Technology and Methodology |
Remote sensing image de-noising algorithm based on double discrete wavelet transform
ZHANG Qian
Department of Information Management, Henan Vocational College of Economics and Trade, Zhengzhou 450018, China
Download: PDF(4097 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In combination with discrete wavelet transform(DWT) and two-dimensional multi-stage median filtering(TMMF)algorithms, the author proposes a self-adaptive remote sensing image de-noising algorithm in this paper. Firstly, the remote sensing noise image is conducted with the single layer DWT so as to obtain the low-frequency wavelet sub-image and high-frequency wavelet sub-images. As the low-frequency sub-image is not polluted by noise, the low-frequency sub-image should be kept unchanged. Signal layer DWT is conducted again for high-frequency sub-images, and therefore the secondary low-frequency sub-image and secondary high-frequency sub-images are obtained. Then, the secondary low-frequency sub-images are filtered by the improved TMMF algorithm, and the secondary high-frequency sub-images are processed by the improved wavelet hard threshold function model. Finally, the wavelet reconstruction image is acquired. Three remote sensing images with detailed information were adopted to test the performance of the method proposed in this paper, and the results of theoretical analysis and test show that the filtering performance of the algorithm proposed in this paper is superior to TMMF algorithm and its improved algorithm as well as wavelet transform hard threshold de-noising algorithm.

Keywords lake morphology      shape index      fractal dimension      lake district      remote sensing     
:  TP751.1  
  TP391.41  
Issue Date: 23 July 2015
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Lei
ZANG Shuying
SHAO Tiantian
WEI Jinhong
SONG Kaishan
Cite this article:   
LIU Lei,ZANG Shuying,SHAO Tiantian, et al. Remote sensing image de-noising algorithm based on double discrete wavelet transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 14-20.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2015.04.03     OR     https://www.gtzyyg.com/EN/Y2015/V27/I4/14

[1] 张九星, 黑保琴, 李盛阳, 等.基于变分方法的遥感图像去噪研究[J].遥感技术与应用, 2010, 25(4):560-566. Zhang J X, Hei B Q, Li S Y, et al.Remote sensing image noise removal research based on variational method[J].Remote Sensing Technology and Application, 2010, 25(4):560-566.

[2] 王相海, 李放, 宋传鸣.局部自适应混合模型的遥感图像去噪算法[J].中国图象图形学报, 2011, 16(7):1289-1296. Wang X H, Li F, Song C M.Remote sensing image de-noising based on local adaptive mixture model[J].Journal of Image and Graphics, 2011, 16(7):1289-1296.

[3] 秦振涛, 杨武年, 潘佩芬.基于稀疏表示和自适应字典学习的"高分一号"遥感图像去噪[J].光电工程, 2013, 40(9):16-21. Qin Z T, Yang W N, Pan P F.The remote sensing image denoising of "the first satellite of high resolution" based on representation and dictionary learning[J].Opto-Electronic Engineering, 2013, 40(9):16-21.

[4] 余岸竹, 姜挺, 唐志华, 等.一种基于压缩感知的遥感影像混合去噪模型[J].测绘科学技术学报, 2013, 30(1):68-72. Yu A Z, Jiang T, Tang Z H, et al.A hybrid model for de-noising remote sensing image based on compressive sensing theory[J].Journal of Geomatics Science and Technology, 2013, 30(1):68-72.

[5] 王晓甜, 石光明, 牛毅, 等.基于移不变全方向角提升的遥感图像降噪[J].测绘学报, 2011, 40(5):555-562. Wang X T, Shi G M, Niu Y, et al.Translation invariant omnidirectional lifting based on remote sensing image denoising[J].Acia Geodaelica et Carlographica Sinica, 2011, 40(5):555-562.

[6] 李殿均, 贾振红, 覃锡忠, 等.基于NSCT阈值萎缩法的遥感图像去噪[J].计算机工程, 2012, 38(5):227-229. Li D J, Jia Z H, Qin X Z, et al.Remote sensing image denoising based on NSCT threshold shrinkage approach[J].Computer Engineering, 2012, 38(5):227-229.

[7] 黄长均, 郭际明, 喻小东, 等.干涉图EMD-自适应滤波去噪法[J].测绘学报, 2013, 42(5):707-714. Huang C J, Guo J M, Yu X D, et al.The study of interferogram denoising method based on EMD and adaptive filter[J].Acta Geodaetica Carlographica Sinica, 2013, 42(5):707-714.

[8] 程德强.矿井数字视频信息处理技术[M].北京:科学出版社, 2012. Cheng D Q.Mine Digital Video Information Processing Technology[M].Beijing:Science Press, 2012.

[9] 王明常, 邢立新, 杨毅恒, 等.动态方向加权二维多级中值滤波的图像处理[J].吉林大学学报:信息科学版, 2006, 24(1):18-21. Wang M C, Xing L X, Yang Y H, et al.Directional weighted two-dimensional multi-step median filtering in image processing[J].Journal of Jilin University:Information Science Edition, 2006, 24(1):18-21.

[10] 郑江云, 陈春霞.应用中值滤波法消除高密度椒盐噪声算法[J].安庆师范学院学报:自然科学版, 2013, 19(4):55-58. Zheng J Y, Chen C X.An algorithm for removal of high density salt and pepper noise based on median filtering[J].Journal of Anqing Teachers College:Natural Science Edition, 2013, 19(4):55-58.

[11] 张辰锐, 樊养余, 刘姝, 等.一种基于模糊决策的开关矢量中值滤波方法[J].计算机应用研究, 2013, 30(12):3870-3873. Zhang C R, Fan Y Y, Liu S, et al.Switching vector median filter based on fuzzy decision[J].Application Research of Computers, 2013, 30(12):3870-3873.

[12] 王小兵, 孙久运, 汤海燕.基于小波变换的图像混合噪声自适应滤波算法[J].微电子学与计算机, 2012, 29(6):91-95. Wang X B, Sun J Y, Tang H Y.Adaptive filtering algorithm for mixed noise image based on wavelet transform[J].Microelectronics and Computer, 2012, 29(6):91-95.

[13] 杨婧玮, 李贺, 王智超.改进Frost算子在SAR图像斑点噪声抑制中的应用[J].测绘科学技术学报, 2009, 26(4):280-282. Yang J W, Li H, Wang Z C.Application of SAR image de-speckling method based on improved Frost filter[J].Journal of Geomatics Science and Technology, 2009, 26(4):280-282.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech