Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 128-136     DOI: 10.6046/gtzyyg.2019.04.17
|
Glacier change and mass balance (1972—2011) in Ulugh Muztagh,eastern Kunlun Mountains, monitored by remote sensing
Zongli JIANG1, Junli ZHANG1, Zhen ZHANG2(), Shiyin LIU3,4, Junfeng WEI1, Wanqin GUO4, Chuanguang ZHU1, Danni HUANG2
1. School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201,China
2. School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
3. Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
4. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Lanzhou 730000, China
Download: PDF(4080 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to further understand the glacier change in Ulugh Muztagh under the background of climate change, historical topographic map data, Landsat TM, SRTM DEM and TerraSAR-X/TanDEM-X data with bi-static mode were employed to obtain the detail change of the glacier area and mass balance between 1972 and 2011 around Muztagh peak. The results indicated that reduction rate of annual glacier area was 0.02±0.06% between 1972 and 2011. Among all glaciers, 47 glaciers showed retreat while 2 glaciers advanced for some distance. And the mass change showed a slight negative balance (-0.06±0.01 m w.e./a) for the whole region. From 1972 to 1999, the mass balance was -0.11±0.02 m w.e./a, caused probably by the temperature rising; From 1999 to 2011, the mass change was close to balance (0.02±0.04 m w.e./a), caused by the precipitation increasing. Glacier advance in Muztagh was different from that of normal advanced glacier. For this kind of Polar type glaciers, it was probably caused by the inner melting or liquid water occurrence due to more precipitation that made some glaciers moving forward or surging. In the background of the current climate, most glaciers showed retreat but two glaciers advanced and one glacier surged (avalanche); overall, the glaciers in the region showed slightly negative mass balance.

Keywords Ulugh Muztagh      glacier change      mass balance      glacier surge      TanDEM-X     
:  TP79  
Corresponding Authors: Zhen ZHANG     E-mail: zhangzhen@aust.edu.cn
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zongli JIANG
Junli ZHANG
Zhen ZHANG
Shiyin LIU
Junfeng WEI
Wanqin GUO
Chuanguang ZHU
Danni HUANG
Cite this article:   
Zongli JIANG,Junli ZHANG,Zhen ZHANG, et al. Glacier change and mass balance (1972—2011) in Ulugh Muztagh,eastern Kunlun Mountains, monitored by remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 128-136.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.17     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/128
Fig.1  Map of the study area
日期 主影像 从影像 垂直基线/m 轨道
2012年1月15日 TerrSAR-X TanDEM-X 164.618 0 升轨
2012年2月6日 TanDEM-X TerrSAR-X 174.073 4 升轨
2012年2月17日 TerrSAR-X TanDEM-X 168.637 8 升轨
Tab.1  TerrSAR-X/TanDEM-X data
Fig.2  Flowchart for DEM generation from TerrSAR-X/TanDEM-X differential Interferometry
类型 Em/m σ/m N/个 E/m
SRTM-地形图 0.79 10.52 12 180 0.79
TanDEM-SRTM -0.59 2.17 12 045 0.59
TanDEM-地形图 -0.19 10.63 12 036 0.22
Tab.2  Statistics of errors of the adjusted DEMs
Fig.3  Glacier elevation changes of Ulugh Muztagh during 1972-1999, 1999-2011, 1972—2011
冰川名称 1972年面
积/km2
1999年面
积/km2
2011年面
积/km2
1972—1999年面积
变化率/(%·a-1)
1999—2011年面积
变化率/(%·a-1)
1972—2011年面积
变化率/(%·a-1)
木孜塔格冰川 48.7±0.5 48.9±0.6 48.9±0.6 0.01±0.06 0.00±0.14 0.01±0.06
淙流冰川 26.5±0.4 26.6±0.5 26.6±0.5 0.01±0.09 0.00±0.22 0.01±0.09
琳水冰川 29.4±0.4 29.4±0.4 29.4±0.4 0.00±0.07 0.00±0.16 0.00±0.07
玲珑冰川 37.2±0.5 37.2±0.6 37.2±0.6 0.00±0.08 0.00±0.18 0.00±0.08
鱼鳞川冰川 98.2±1.3 96.3±1.5 96.4±1.4 -0.07±0.07 0.00±0.18 -0.05±0.07
冰鳞川冰川 63.6±0.6 63.3±0.7 62.1±0.7 -0.02±0.05 -0.15±0.13 -0.06±0.05
月牙冰川 18.2±0.3 18.0±0.4 17.9±0.4 -0.05±0.11 -0.04±0.26 -0.05±0.10
龙头冰川 52.8±0.7 51.9±0.7 51.8±0.7 -0.06±0.07 -0.02±0.17 -0.05±0.07
蛇头川冰川 17.5±0.4 16.7±0.5 16.5±0.5 -0.17±0.13 -0.10±0.33 -0.15±0.13
龙头沟冰川 21.7±0.3 21.7±0.3 21.7±0.3 -0.00±0.07 0.00±0.17 -0.00±0.07
伸舌头冰川 6.3±0.2 6.1±0.2 6.1±0.2 -0.09±0.20 -0.06±0.46 -0.09±0.19
5Z141E32冰川 0.8±0.1 0.7±0.1 0.7±0.1 -0.31±0.42 0.00±0.99 -0.21±0.41
区域内所有冰川 668.2±10.8 663.2±12.1 661.3±12.0 -0.03±0.09 -0.02±0.21 -0.03±0.06
Tab.3  Glacier area changes of Ulugh Muztagh
冰川名称 1972—1999年 1999—2011年 1972—2011年
平均高程变化/m 平均物质平衡/
(m w.e.a-1)
平均高程变化/m 平均物质平衡/
(m w.e.a-1)
平均高程变化/m 平均物质平衡/
(m w.e.a-1)
木孜塔格冰川 -7.10±0.79 -0.22±0.02 0.65±0.59 0.05±0.04 -7.09±0.22 -0.15±0.01
淙流冰川 -9.71±0.79 -0.31±0.02 1.42±0.59 0.10±0.04 -10.40±0.22 -0.23±0.01
琳水冰川 -15.32±0.79 -0.48±0.02 2.23±0.59 0.16±0.04 -13.75±0.22 -0.30±0.01
玲珑冰川 -3.52±0.79 -0.11±0.02 1.95±0.59 0.14±0.04 -0.80±0.22 -0.02±0.01
鱼鳞川冰川 -11.30±0.79 -0.36±0.02 -1.29±0.59 -0.09±0.04 -11.34±0.22 -0.25±0.01
冰鳞川冰川 2.30±0.79 0.07±0.02 1.10±0.59 0.08±0.04 3.76±0.22 0.08±0.01
月牙冰川 -9.48±0.79 -0.30±0.02 -2.47±0.59 -0.18±0.04 -10.29±0.22 -0.22±0.01
龙头冰川 -4.02±0.79 -0.13±0.02 -0.25±0.59 -0.02±0.04 -2.55±0.22 -0.06±0.01
蛇头川冰川 -5.11±0.79 -0.16±0.02 -3.33±0.59 -0.24±0.04 -7.17±0.22 -0.16±0.01
龙头沟冰川 4.43±0.79 0.14±0.02 -0.03±0.59 -0.00±0.04 5.06±0.22 0.11±0.01
伸舌头冰川 -6.16±0.79 -0.19±0.02 -0.18±0.59 -0.01±0.04 -5.43±0.22 -0.11±0.01
5Z141E32冰川 -6.90±0.79 -0.22±0.02 -2.29±0.59 -0.16±0.04 -9.77±0.22 -0.21±0.01
区域内所有冰川 -3.64±0.79 -0.11±0.02 0.21±0.59 0.02±0.04 -2.63±0.22 -0.06±0.01
Tab.4  Glacier mass changes during the investigated periods
Fig.4  Elevation change of surged glacier
Fig.5  Elevation change of surged glacier along the main flow line
Fig.6  Fluctuation of annual average air temperature and annual precipitation from 1971 to 2011
研究区 时间段 数据 年均面积缩小
率/(%·a-1)
文献
西昆仑 1970—
2010年
中国第一次与第二次冰川编目 -0.1 [31]
阿汝错 1971—
2016年
中国第一次编目、Landsat -0.01 [8]
各拉丹冬 1964—
2010年
CORONA,Landsat -0.15 [29]
普若岗日 1992—
2014年
Landsat TM,HJ-1A/1B -0.17 [30]
岗扎日 1970—
2016年
Landsat,地形图 -0.08± 0.02 [32]
阿尔金山西段 1973—
2015年
Landsat -0.44 [28]
木孜塔格峰 1972—
2011年
Landsat,地形图 -0.03± 0.06 本研究
Tab.5  Glacier area changes in Ulugh Muztagh and surroundings
研究区 时间段 数据 方法 平均物质平衡/(m w.e./a) 文献
西昆仑 2000—2014年 TerraSAR-X,TanDEM,SRTM InSAR +0.13±0.06 [31]
琼木孜塔格 2000—2014年 TerraSAR-X,TanDEM,SRTM InSAR +0.34±0.06 [12]
土则岗日 2000—2014年 TerraSAR-X,TanDEM,SRTM InSAR +0.36±0.07 [12]
阿汝错 1999—2016年 ASTER,SRTM,地形图 大地测量法 +0.33±0.61 [8]
藏色岗日和耸峙岭 2003—2009年 ICESat GLAS,SRTM 激光测高法 +0.37±0.25 [34]
普若岗日 2000—2012年 TerraSAR-X,TanDEM,SRTM InSAR -0.04±0.23 [10]
西各拉丹冬 1999—2015年 ASTER,SRTM 大地测量法 -0.33±0.38 [36]
岗扎日 1999—2012年 ASTER SRTM 大地测量法 +0.16±0.02 [32]
木孜塔格峰 1999—2011年 TerraSAR-X,TanDEM,SRTM InSAR +0.02±0.04 本研究
Tab.6  Glacier mass changes from 1999 in Ulugh Muztagh and surroundings
[1] Jacob T, Wahr J, Pfeffer W T , et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012,482(7386):514-518.
[2] Gardner A S, Mohold G, Cogley J G , et al. A reconciled estimate of glacier contributions to sea levelrise:2003 to 2009[J]. Science, 2013,340(6134):852-857.
[3] Immerzeel W W, van Beek L P H, Bierkens M F P . Climate change will affect the Asian water towers[J]. Science, 2010,328(5984):1382-1385.
[4] Marzeion B, Kaser G, Maussion F , et al. Limited influence of climate change mitigation on short-term glacier mass loss[J]. Nature Climate Change, 2018,8(4):305-308.
[5] Lambrecht A, Mayer C, Wendt A , et al. Elevation change of Fedchenko Glacier,Pamir Mountains,from GNSS field measurements and TanDEM-X elevation models,with a focus on the upper glacier[J]. Journal of Glaciology, 2018,64(246):637-648.
[6] Li G, Lin H, Ye Q H . Heterogeneous decadal glacier downwasting at the Mt.Everest (Qomolangma) from 2000 to 2012 based on multi-baseline bistatic SAR interferometry[J]. Remote Sensing of Environment, 2018,206:336-349.
[7] Wu K P, Liu S Y, Jiang Z L , et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories[J]. The Cryosphere, 2018,12(1):103-121.
[8] Zhang Z, Liu S Y, Zhang Y , et al. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data[J]. Journal of Glaciology, 2018,64(245):397-406.
[9] Rankl M, Braun M . Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models[J]. Annals of Glaciology, 2016,51(71):273-281.
[10] Neckel N, Braun A, Kropáček J ,et al.Recent mass balance of the Purogangri ice cap,central Tibetan Plateau,by means of differential X-band SAR interferometry[J].The Cryosphere , 7(5):1623-1633.
[11] Zhang Q B, Zhang G S . Glacier elevation changes in the western Nyainqentanglha Range of the Tibetan Plateau as observed by TerraSAR-X/TanDEM-X images[J]. Remote Sensing Letters, 2017,8(12):1143-1152.
[12] Lin H, Li G, Cuo L , et al. A decreasing glacier mass balance gradient from the edge of the upper Tarim Basin to the Karakoram during 2000—2014[J]. Scientific Reports, 2017,7:6712.
[13] Wei J F, Liu S Y, Guo W Q , et al. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps[J]. Annals of Glaciology, 2014,55(66):213-222.
[14] Ye Q H, Zong J B, Tian L D , et al. Glacier changes on the Tibetan Plateau derived from Landsat imagery:mid-1970s—2000-13[J]. Journal of Glaciology, 2017,63(238):273-287.
[15] Brun F, Berthier E, Wagnon P , et al. A spatially resolved estimate of high mountain Asia glacier mass balances,2000—2016[J]. Nature Geoscience, 2017,10(9):668-673.
[16] 郭万钦, 刘时银, 许君利 , 等. 木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J]. 冰川冻土, 2012,34(4):765-774.
[16] Guo W Q, Liu S Y, Xu J L , et al. Monitoring recent surging of the Yulinchuan glacier on north slopes of Muztag range by remote sencing[J]. Journal of Glaciology and Geocryology, 2012,34(4):765-774.
[17] 刘时银, 姚晓军, 郭万钦 , 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015,70(1):3-16.
doi: 10.11821/dlxb201501001 url: http://d.wanfangdata.com.cn/Periodical/dlxb201501001
[17] Liu S Y, Yao X J, Guo W Q , et al. The contemporary glaciers in China based on the second chinese glacier inventory[J]. Acta Geographica Sinica, 2015,70(1):3-16.
[18] 陈亚宁, 王银生, 王志超 , 等. 东昆仑木孜塔格峰地区现代冰川的分布、数量及类型[J]. 干旱区研究, 1985,2(4):56-61.
[18] Chen Y N, Wang Y S, Wang Z C , et al. Distribution,quantity and types of modern glaciers in the Muztag peak area,eastern Kunlun[J]. Arid Zone Research, 1985,2(4):56-61.
[19] 刘时银, 姚晓军, 郭万钦 , 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015,70(1):3-16.
doi: 10.11821/dlxb201501001 url: http://d.wanfangdata.com.cn/Periodical/dlxb201501001
[19] Liu S Y, Yao X J, Guo W Q , et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. ActaGeographica Sinica, 2015,70(1):3-16.
[20] GB/T 1234. 1—2008国家基本比例尺地图编绘规范,第一部分:1:25 000 1:50 000 1:100 000地形图编绘规范[S].
[20] GB/T 1234. 1—2008 Compilation specification for nation fundamental scale maps-Part1:Compilation specifications for 1:25 000 1:50 000 1:100 000 topographic maps[S].
[21] Kolecka N, Kozak J . Assessment of the accuracy of SRTM C- and X-band high mountain elevation data:A case study of the Polish Tatra Mountains[J]. Pure and Applied Geophysics, 2014,171(6):897-912.
[22] 蒋宗立, 刘时银, 郭万钦 , 等. 黄河源区阿尼玛卿山典型冰川表面高程近期变化[J]. 冰川冻土, 2018,40(2):231-237.
[22] Jiang Z L, Liu S Y, Guo W Q , et al. Recent surface elevation changes of three representative glaciers in Ányêmaqên Mountains,source region of Yellow River[J]. Journal of Glaciology and Geocryology, 2018,40(2):231-237.
[23] Nuth C, Kääb A . Co-registration and bias corrections of satellite elevation data sets for quantifying glacierthickness change[J]. The Cryosphere, 2011,5(1):271-290.
[24] Gardelle J, Berthier E, Arnaud Y . Impact of resolution and Radar penetration on glacier elevation changescomputed from DEM differencing[J]. Journal of Glaciology, 2012,58(208):419-422.
[25] Bolch T, Pieczonka T, Benn D I . Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derivedfrom stereo imagery[J]. The Cryosphere, 2011,5(2):349-358.
[26] Huss M . Density assumptions for converting geodetic glacier volume change to mass change[J]. The Cryosphere, 2013,7(3):877-887.
[27] 王宁练, 徐柏青, 蒲健辰 , 等. 青藏高原冰川内部富含水冰层的发现及其环境意义[J]. 冰川冻土, 2013,35(6):1371-1381.
doi: 10.7522/j.issn.1000-0240.2013.0152
[27] Wang N L, Xu B Q, Pu J C , et al. Discovery of the water-rich ice layers in glaciers on the Tibetan Plateau and its environmental significances[J]. Journal of Glaciology and Geocryology, 2013,35(6):1371-1381.
[28] 胡凡盛, 杨太保, 冀琴 , 等. 近40 a阿尔金山冰川与气候变化关系研究[J]. 干旱区地理, 2017,40(3):581-588.
[28] Hu F S, Yang T B, Ji Q , et al. Relationship between the glacier and climate change in the Altun Mountain in recent four decades[J]. Arid Land Geography, 2017,40(3):581-588.
[29] 王媛, 吴立宗, 许君利 , 等. 1964—2010年青藏高原长江源各拉丹冬地区冰川变化及其不确定性分析[J]. 冰川冻土, 2013,35(2):255-262.
doi: 10.7522/j.issn.1000-0240.2013.0031
[29] Wang Y, Wu L Z, Xu J L , et al. Variation and uncertainty analysis of the glcier in the past 50 years in Geladandong of Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2013,35(2):255-262.
[30] 拉巴, 格桑卓玛, 拉巴卓玛 , 等. 1992—2014年普若岗日冰川和流域湖泊面积变化及原因分析[J]. 干旱区地理, 2016,39(4):770-776.
[30] La B, Ge S Z M, La B Z M ,et al.Variation and reasons of the coverage of Puruogangri Glacier and its surrounding lakes during 1992—2014[J]. Arid Land Geography, 2016,39(4):770-776.
[31] Bao W J, Liu S Y, Wei J F , et al. Glacier changes during the past 40 years in the West Kunlun Shan[J]. Journal of Mountain Science, 2015,12(2):344-357.
[32] 张震, 刘时银 . 1970—2016年青藏高原岗扎日冰川变化与物质平衡遥感监测研究[J]. 地球信息科学学报, 2018,20(9):1338-1349.
doi: 10.12082/dqxxkx.2018.180059
[32] Zhang Z, Liu S Y . Area changes and mass balance of glaciers in KangzhagRi of the Tibetan Plateau from 1970 to 2016 as derived from remote sensing data[J]. Journal of Geo-Information Science, 2018,20(9):1338-1349.
[33] Zhou Y S, Li Z W, Li J , et al. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs[J]. Remote Sensing of Environment, 2018,210:96-112.
[34] Neckel N, Kropáček J, Bolch T , et al. Glacier mass changes on the Tibetan Plateau 2003—2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 2014,9(9):468-475.
[35] Yao T D, Thompson L, Yang W , et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012,2(9):663-667.
[36] Chen, A A, Wang N L, Li Z ,et al.Region-wide glacier mass budgets for the Tanggula Mountains between 1969 and 2015 derived from remote sensing data[J]. Arctic Antarctic and Alpine Research, 2017,49(4):551-568.
[1] Lili FENG, Liming JIANG, Lin LIU, Yafei SUN. Karayaylak glacier changes in the Kongur Mountain of eastern Pamir between 1973 and 2016 based on active and passive remote sensing technologies[J]. Remote Sensing for Land & Resources, 2020, 32(2): 162-169.
[2] SUN Yafei, JIANG Liming, LIU Lin, SUN Yongling, WANG Hansheng. TanDEM-X bistatic SAR interferometry and its research progress[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 16-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech