Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 49-54     DOI: 10.6046/gtzyyg.2020.03.07
|
Different remote sensing image matching methods based on multiple constraints
Bai1(), Yuying2, Chengling3, Yanru2, Shihu1
1. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083,China
3. Beijing GEOWAY Software Co., Ltd., Beijing 100043, China
Download: PDF(3722 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to solve the problem that there are large geometric deformation and gray difference between different remote sensing satellite image and it is difficult to match a large number of feature points, the authors put forward a multi-source remote sensing image matching method under multiple constraints in this paper. First, ASIFT algorithm is used to extract high-quality feature points and complete the initial matching, and the matching results are optimized by RANSAC algorithm. Secondly, affine transformation matrix of the two images is calculated by using the matching feature points set, and the remaining feature points are matched again by combining affine transformation and gray correlation coefficient. Finally, support vector regression (SVR) is used to check the matching results. Satellite images of ZY3-01, ZY3-02 and GF-1 were selected in the experiment. The experimental results show that, compared with SIFT and ASIFT algorithms, the proposed method can greatly increase the number of matching points between multi-source remote sensing images and improve the matching accuracy.

Keywords multi-source remote sensing images      image matching      ASIFT      affine transformation      support vector regression     
:  TP79  
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bai
Yuying
Chengling
Yanru
Shihu
Cite this article:   
Bai,Yuying,Chengling, et al. Different remote sensing image matching methods based on multiple constraints[J]. Remote Sensing for Land & Resources, 2020, 32(3): 49-54.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.07     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/49
Fig.1  The matching flow of the proposed method
序号 传感器 波段 图像大
小/像素
空间分辨率/m
实验一 ZY3-01 全色正视 583×502 2.1
ZY3-02 全色正视 583×502 2.1
实验二 ZY3-02 全色正视 597×534 2.1
ZY3-02 多光谱 219×198 5.8
实验三 GF-1 全色正视 500×500 2.0
ZY3-01 全色正视 500×500 2.1
Tab.1  Experiment image parameters
序号 算法 特征点个数 匹配对数
参考影像 待匹配影像
实验一 SIFT 3 670 2 993 259
ASIFT 35 100 33 954 374
本文方法 35 100 33 954 1 865
实验二 SIFT 475 3 704 121
ASIFT 31 973 25 443 355
本文方法 31 973 25 443 2 838
实验三 SIFT 2 093 3 530 2
ASIFT 23 426 37 589 21
本文方法 23 426 37 589 61
Tab.2  Results of SIFT, ASIFT and the proposed method
Fig.2-1  Different remote sensing image matching results
Fig.2-2  Different remote sensing image matching results
[1] 王竞雪, 张晶. 局部仿射变换的自适应窗口立体影像匹配算法[J]. 测绘科学, 2019,9(44):125-131.
[1] Wang J X, Zhang J. Adaptive window stereo matching algorithm combining local affine transformation[J]. Science of Surveying and Mapping, 2019,9(44):125-131.
[2] 唐新明, 王鸿燕, 祝小勇. 资源三号卫星测绘技术与应用[J]. 测绘学报, 2017,46(10):284-293.
[2] Tang X M, Wang H Y, Zhu X Y. Technology and application of surveying and mapping for ZY-3 Satellites[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):284-293.
[3] 谢萍. 基于Harris角点与SIFT特征的近景影像匹配[D]. 长沙:中南大学, 2011.
[3] Xie P. Close-range image matching based on harris corners and SIFT features[D]. Changsha:Central South University, 2011.
[4] 朱红, 宋伟东, 杨冬, 等. 近景影像三角网内插点密集匹配方法[J]. 测绘科学, 2016,41(4):1032-1038.
[4] Zhu H, Song W D, Yang D, et al. Dense matching method of inserting point into the Delaunay triangulation for close-range image[J]. Science of Surveying and Mapping, 2016,41(4):1032-1038.
[5] 王竞雪, 张晶, 张雪. 迭代三角网约束的近景影像密集匹配[J]. 信号处理, 2018,34(3):347-356.
[5] Wang J X, Zhang J, Zhang X. A dense matching algorithm of close-range images constrained by iterative triangle network[J]. Journal of Signal Processing, 2018,34(3):347-356.
[6] 朱红, 宋伟东, 谭海, 等. Delaunay三角网优化下的小面元遥感影像配准算法[J]. 信号处理, 2016,32(9):1032-1038.
[6] Zhu H, Song W D, Tan H, et al. A tiny facet primitive remote sensing image registration algorithm based on optimized delaunay triangulation[J]. Journal of Signal Processing, 2016,32(9):1032-1038.
[7] 王琦, 宋伟东, 王竞雪. 三角网约束的立体影像密集匹配方法[J]. 测绘与空间地理信息, 2019,42(5):247-250.
[7] Wang Q, Song W D, Wang J X. Stereo image dense matching method with triangle net constraint[J]. Geomatics & Spatial Information Technology, 2019,42(5):247-250.
[8] 叶沅鑫, 慎利, 陈敏, 等. 局部相位特征描述的多源遥感影像自动匹配[J]. 武汉大学学报(信息科学版), 2017,42(9):1278-1284.
[8] Ye Y X, Shen L, Chen M, et al. An automatic matching method based on local phase feature descriptor for multi-source remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2017,42(9):1278-1284.
[9] 卢迪, 林雪. 一种改进自适应权重稀疏区域立体匹配算法[J]. 哈尔滨理工大学学报, 2016,21(1):83-88.
[9] Lu Di Lin X. An improved adaptive support-weight stereo matching algorithm with sparse region[J]. Journal of Harbin University of Science and Technology, 2016,21(1):83-88.
[10] 凌志刚, 梁彦, 程咏梅, 等. 一种稳健的多源遥感图像特征配准方法[J]. 电子学报, 2010,38(12):2892-2897.
url: http://www.ejournal.org.cn/CN/abstract/abstract6112.shtml
[10] Ling Z G, Liang Y, Cheng Y M, et al. A robust multi-source remote-sensing image registration method based on feature matching[J]. Acta Electronica Sinica, 2010,38(12):2892-2897.
url: http://www.ejournal.org.cn/CN/abstract/abstract6112.shtml
[11] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94 url: http://www.springerlink.com/content/h4l02691327px768/
[12] 杜春鹏, 李景山. 一种结合拓扑信息和SIFT特征的多源遥感影像自动匹配方法[J].测绘通报, 2017(10):125-129.
[12] Du C P, Li J S. A multi-sensor remote sensing image automatic matching method based on topological information and SIFT features[J].Bulletin of Surveying and Mapping 2017(10):125-129.
[13] 李建晔. 点、线结合下的多源高分辨率遥感影像匹配[D]. 阜新:辽宁工程技术大学, 2011.
[13] Li J Y. The Matching of multi-source high resolution image based on points and lines[D]. Fuxin:Liaoning Technical University, 2011.
[14] 秦雪, 侯进. 一种改进的SIFT-PCA算法在图像检索中的应用[J]. 西南科技大学学报, 2011,26(4):65-70.
[14] Qin X, Hou J. An improved SIFT-PCA algorithm application in image retrieval[J]. Journal of Southwest University of Science and Technology, 2011,26(4):65-70.
[15] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Trans on Pattern Analysis and Matchine Intelligence, 2005,27(10):1615-1630.
[16] Marr D, Poggio T. A computational theory of human stereo vision[J]. Proceedings of the Royal Society B(Biological Sciences), 1979,204(1156):301-328.
[17] 郭江, 申浩, 李书晓, 等. 基于全局仿射变换估计的航拍视频校正[J]. 计算机应用研究, 2011,28(6):2342-2345.
[17] Guo J, Shen H, Li S X, et al. Global affine motion estimation for aerial video registration[J]. Application Research of Computers, 2011,28(6):2342-2345.
[18] 侯文广, 吴梓翠, 丁明跃. 基于SURF和TPS的立体影像密集匹配方法[J]. 华中科技大学学报(自然科学版), 2010,38(7):91-94.
[18] Hou W G, Wu Z C, Ding M Y. Densely stereo image matching using SURF and TPS[J]. Huazhong University of Science & Technology (Natural Science Edition), 2010,38(7):91-94.
[19] Morel J M, Yu G. ASIFT:A new framework for fully affine invariant image comparison[J]. Siam Journal on Imaging Sciences, 2010,2(2):438-469.
doi: 10.1137/080732730 url: http://epubs.siam.org/doi/10.1137/080732730
[20] Kim T, Im Y J. Automatic satellite image registration by combination of matching and random sample consensus[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,41(5):1111-1117.
[21] Fischler M A. Readings in computer vision random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Readings in Computer Vision, 1987: 726-740.
[22] 王震宇, 张可黛, 吴毅, 等. 基于SVM和AdaBoost的红外目标跟踪[J]. 中国图象图形学报, 2007,12(11):2052-2057.
doi: 10.11834/jig.20071118 url: http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=2007011348&flag=1
[22] Wang Z Y, Zhang K D, Wu Y, et al. Target tracking in infrared image sequences by combining SVM and Adaboost[J]. Journal of Image and Graphics, 2007,12(11):2052-2057.
doi: 10.11834/jig.20071118 url: http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?file_no=2007011348&flag=1
[23] 韩杰, 谢勇, 吴国玺, 等. 顾及多相机拼接成像特征的高分一号卫星影像自适应匹配方法[J]. 国土资源遥感, 2017,29(4):13-19.doi: 10.6046/gtzyyg.2017.04.03.
[23] Han J, Xie Y, Wu G X, et al. Research on the self-adaptive matching method of GF-1 satellite imagery considering the features of multi-camera mosaic imaging[J]. Remote Sensing for Land and Resources, 2017,29(4):13-19.doi: 10.6046/gtzyyg.2017.04.03.
[1] ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. Estimation of maize seedling number based on UAV multispectral data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 106-114.
[2] DU Shouji, ZOU Zhengrong, ZHANG Yunsheng, ZHANG Minglei. An automatic tie point matching method for L0 level airborne three-line-array images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 65-70.
[3] YU Le, CAO Kai, WU Yang, ZHANG Deng-rong. Using Cross-sensor Image Learning for CBERS CCD Bands Simulation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 48-53.
[4] CUI Teng-Fei, CHEN Sheng-Bo, WANG Jing-Ran. THREE-DIMENSIONAL MODELING OF THE LUNAR SURFACE BASED ON STEREO CAMERA ONBOARD CHANG’E ORBITOR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(4): 31-34.
[5] Di Kaichang, Wang Runsheng, Zhang Youying . AUTOMATIC DIGITAL ELEVATION EXTRACTION FROM REMOTE SENSING IMAGE IN PERSONAL COMPUTER[J]. REMOTE SENSING FOR LAND & RESOURCES, 1996, 8(3): 56-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech