Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (3) : 136-142     DOI: 10.6046/gtzyyg.2020.03.18
|
Geological information extraction based on remote sensing of unmanned aerial vehicle: Exemplified by Liujiang Basin
LIAN Huiqing1(), MENG Lu1(), HAN Ruigang1, YANG Yi1, YU Biao2
1. School of Safety Engineering, North China University of Science and Technology, Langfang 065201, China
2. School of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China
Download: PDF(4447 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to solve the problem that the traditional geological survey has a large workload and low efficiency and that it is impossible to extract information from high slope geological points, the authors chose the Liujiang Basin in Qinhuangdao City, Hebei Province, as the research object. Oblique photogrammetry technology was used to obtain the image data of the study area. The generated image was used to construct a high-resolution 3D real-world model using the Context Capture software. The 3D model was identified and extracted in the Acute 3D viewer, including the extracted area’s latitude, longitude, and elevation. Several pieces of basic information were extracted, such as the distance between two points, the vertical distance, identification of the fault and calculation of the fault’s strike, tendency, and inclination, identification of the type and nature of the rock, and calculation of data such as perimeters, surface area, and volume value of the exposed rock. The results show that the extraction results are in good agreement with field measurements and can achieve the purpose of identifying geological phenomena and extracting geological quantitative information. It is shown that the method adopted in this paper has practical significance for geological information identification and extraction of UAV remote sensing technology.

Keywords oblique photography      drone image      three-dimensional modeling      geological information      Liujiang Basin     
:  P642  
  TP79  
Corresponding Authors: MENG Lu     E-mail: 2366884370@qq.com;376367920@qq.com
Issue Date: 09 October 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huiqing LIAN
Lu MENG
Ruigang HAN
Yi YANG
Biao YU
Cite this article:   
Huiqing LIAN,Lu MENG,Ruigang HAN, et al. Geological information extraction based on remote sensing of unmanned aerial vehicle: Exemplified by Liujiang Basin[J]. Remote Sensing for Land & Resources, 2020, 32(3): 136-142.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.03.18     OR     https://www.gtzyyg.com/EN/Y2020/V32/I3/136
Fig.1  Dajiang Royal Mavic 2pro professional version of the drone
项目 参数 项目 参数
质量/g 907 最大飞行高度/m 6 000
抗风等级 5级 最大上升速度/(m·s-1) 5(s模式)
4(p模式)
悬停时间/min 29 携带相机 L1D-20c哈苏相机
镜头等效焦距/mm 28 障碍物感知范围 全向感知系统(前后下双目视觉系统,
左右单目视觉系统,上下红外传感器)
Tab.1  Dajiang Royal Mavic 2pro professional version of the UAV parameters
观察点 航向重
叠率/%
旁向重
叠率/%
相机倾斜
角/(°)
航拍面
积/m2
飞行高
度/m
飞行速度/
(m·s-1)
东部落 85 80 45 123×183 107 5
潮水峪 85 80 45 27×55 40 5
Tab.2  Observation point drone parameter setting
Fig.2  Generate 3D real-world model flow
Fig.3  3D real-world model of the study area
Fig.4  Schematic diagram of the 3D model of the East Tribe observation point
顶点 经度/(°) 纬度/(°) 高程/m
A E119.636 590 0 N40.135 782 6 175.10
B E119.636 925 4 N40.136 275 2 125.60
C E119.637 615 9 N40.135 351 8 125.60
a E119.636 136 1 N40.137 517 1 171.08
b E119.636 618 6 N40.137 848 0 119.50
c E119.636 808 9 N40.137 429 8 119.50
Tab.3  Coordinate information of each point of the triangular surface
Fig.5  Triangle face diagram
Fig.6  Schematic diagram of the three-dimensional model of the tide tidal observation point
Fig.7  Rock sample
Fig.8  Schematic diagram of rock level
类别 距离/m 垂直距离/m 倾角θ/(°)
纹理1(ab) 4.49 0.26 3.3
纹理2(cd) 2.90 0.33 6.5
纹理3(ef) 3.43 0.34 5.7
Tab.4  Texture information
Fig.9  Rock information extraction process diagram
Fig.10  Schematic diagram of volume calculation
类别 采样距离/m 周长/m 面积/m2 体积/m3
岩石1(灰岩) 2.70 228.77 1 717.00 19 025.02
侵入岩2(闪长玢岩) 0.41 25.40 38.29 245.14
侵入岩3(辉绿岩) 0.43 24.73 24.49 206.23
Tab.5  Exposed rock data
[1] 董秀军. 三维空间影像技术在地质工程中的综合应用研究[D]. 成都:成都理工大学, 2015.
[1] Dong X J. Comprehensive application research of 3D spatial imaging technology in geological engineering[D]. Chengdu:Chengdu University of Technology, 2015.
[2] 董杨. 无人机影像拼接并行计算技术研究[D]. 北京:北京建筑大学, 2017.
[2] Dong Y. Research on parallel computing technology of UAV image mosaic[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2017.
[3] 金鼎坚, 王建超, 吴芳, 等. 航空遥感技术及其在地质调查中的应用[J]. 国土资源遥感, 2019,31(4):1-10.doi: 10.6046/gtzyyg.2019.04.01.
[3] Jin D J, Wang J C, Wu F, et al. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land and Resources, 2019,31(4):1-10.doi: 10.6046/gtzyyg.2019.04.01.
[4] Tonkin T N, Midgley N G, Graham D J, et al. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys:A test of emerging integrated approaches at Cwm Idwal North Wales[J]. Geomorphology, 2014,226(1-2):35-43.
[5] 鲁恒, 李永树, 何敬, 等. 无人机低空遥感影像数据的获取与处理[J]. 测绘工程, 2011,20(1):51-54.
[5] Lu H, Li Y S, He J, et al. Acquisition and processing of low-altitude remote sensing image data of UAV[J]. Surveying and Mapping Engineering, 2011,20(1):51-54.
[6] 鲁恒, 李永树, 林先成. 无人机高空间分辨率影像分类研究[J]. 测绘科学, 2011,36(6):106-108.
[6] Lu H, Li Y S, Lin X C. Research on high spatial resolution image classification of drones[J]. Science and Mapping Science, 2011,36(6):106-108.
[7] Diaz-Varela R A, Zarco-Tejada P J, Angileri V, et al. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle[J]. Journal of Environmental Management, 2014,134(4):117-126.
[8] Gonalves J A, Henriques R. UAV photogrammetry for topographic monitoring of coastal areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,104:101-111.
doi: 10.1016/j.isprsjprs.2015.02.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271615000532
[9] 荆平平, 李兵, 贾宗仁, 等. 基于无人机遥感的信息提取研究[J]. 测绘与空间地理信息, 2017,40(12):77-80.
[9] Jing P P, Li B, Jia Z R, et al. Research on information extraction based on remote sensing of unmanned aerial vehicles[J]. Surveying and Spatial Geography Information, 2017,40(12):77-80.
[10] 姚林林, 张世殊, 赵明, 等. 基于无人机进行地质点信息提取方法研究[J]. 水电站设计, 2017,33(2):49-52.
[10] Yao L L, Zhang S S, Zhao M, et al. Research on geological point information extraction method based on UAV[J]. Design of Hydroelectric Power Station, 2017,33(2):49-52.
[11] 殷强. 四旋翼无人机自主控制系统研究[D]. 天津:天津大学, 2012.
[11] Yin Q. Research on autonomous control system of quadrotor UAV[D]. Tianjin:Tianjin University, 2012.
[12] 王猛. 河北省煤矿区瓦斯赋存的构造逐级控制[D].北京:中国矿业大学(北京),2012.
[12] Wang M. Constructional control of gas occurrence in coal mining areas in Hebei Province[D].Beijing:China University of Mining and Technology(Beijing), 2012.
[13] 张路锁. 河北省煤田构造格局与构造控煤作用研究[D].北京:中国矿业大学(北京),2010.
[13] Zhang L S. Study on the structural pattern and structural coal control of coalfields in Hebei Province[D].Beijing:China University of Mining and Technology(Beijing), 2010.
[14] 朱鹏程. 柳江盆地三维地质建模及核心区地下水资源量评价[D].北京:中国地质大学(北京),2017.
[14] Zhu P C. Three-dimensional geological modeling of Liujiang Basin and evaluation of groundwater resources in core areas[D].Beijing:China University of Geosciences(Beijing), 2017.
[15] 郑怀文, 齐童. 柳江国家地质公园保护开发问题初探[J]. 首都师范大学学报(自然科学版), 2007,28(1):58-62,68.
[15] Zheng H W, Qi T. A preliminary study on the protection and development of Liujiang National Geopark[J]. Journal of Capital Normal University (Natural Science Edition), 2007,28(1):58-62,68.
[16] 方小龙. 无人机倾斜摄影测量技术及其应用[J].百科论坛电子杂志, 2018(22):734-734.
[16] Fang X L. UAV tilt photogrammetry technology and its application[J].Encyclopedia Forum E-Magazine 2018(22):734-734.
[17] 项小伟. 近景摄影辅助倾斜摄影的影像匹配及三维建模研究[D]. 太原:太原理工大学, 2019.
[17] Xiang X W. Image matching and 3D modeling of close-range photography assisted inclined photography[D]. Taiyuan:Taiyuan University of Technology, 2019.
[18] 曹正阳, 张明. 无人机倾斜摄影测量技术及其应用[J]. 科技经济导刊, 2019,27(27):45.
[18] Cao Z Y, Zhang M. UAV tilt photogrammetry and its application[J]. Technology and Economic Guide, 2019,27(27):45.
[19] 李策. 基于Context Capture倾斜摄影三维建模关键技术研究[D]. 唐山:华北理工大学, 2019.
[19] Li C. Research on the key technology of 3D modeling of oblique photography based on Context Capture[D]. Tangshan:North China University of Technology, 2019.
[20] 祁生胜. 青海省东昆仑造山带火成岩岩石构造组合与构造演化[D].北京:中国地质大学(北京),2015.
[20] Qi S S. Rock tectonic combination and tectonic evolution of the East Kunlun orogenic belt in Qinghai Province[D].Beijing:China University of Geosciences(Beijing), 2015.
[21] 陈玲, 贾佳, 王海庆. 高分遥感在自然资源调查中的应用综述[J]. 国土资源遥感, 2019,31(1):1-7.doi: 10.6046/gtzyyg.2019.01.01.
[21] Chen L, Jia J, Wang H Q. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land and Resources, 2019,31(1):1-7.doi: 10.6046/gtzyyg.2019.01.01.
[1] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[2] WANG Ya, ZENG Zhi. An automatic repairing technology of 3D model for blind area in oblique photography based on close range image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 72-77.
[3] YAN Chi, JIAO Runcheng, CAO Ying, NAN Yun, WANG Shengyu, GUO Xuefei. The application of UAV oblique photography in debris flow disaster identification and analysis:Taking the debris flow in Caojiafang, Shijiaying, Fangshan District, Beijing as an Example[J]. Remote Sensing for Land & Resources, 2020, 32(4): 251-257.
[4] MA Jing, LIU Xianglei. Application of 3D visualization to the reconstruction of urban old districts[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 170-174.
[5] DIAO Mingguang, XUE Tao, LI Jiancun, XU Cai, ZOU Senzhong, ZHAO Pengfei. The multi-source spatial data management system based on geological information metadata standard[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 165-170.
[6] HE Kai-Tao, GAN Fu-Ping, WANG Yong-Jiang. THE EXTRACTION OF GEOLOGICAL MICRO-STRUCTURE AND ALTERED ROCK INFORMATION WITH HIGH-RESOLUTION SATELLITE IMAGES IN A SMALL RANGE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 97-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech