Please wait a minute...
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 108-115     DOI: 10.6046/gtzyyg.2020216
Research on remote sensing retrieval and diurnal variation of Secchi disk depth of Jiaozhou Bay based on GOCI
ZHOU Yan(), YU Dingfeng(), LIU Xiaoyan, YANG Qian, GAI Yingying
Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266100, China
Download: PDF(4188 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Secchi disk depth (Zsd) is an important parameter for describing the optical properties of water bodies. With high spatial and temporal resolution, satellite remote sensing technology has become an important method of Zsd observation. Using the in-situ measured data and GOCI images of Jiaozhou Bay (JZB) on May 16, 2017, the authors used semi-analytical algorithms Doron11 and Lee15 to retrieve the Zsd. It is shown that the Lee15 performed better than Doron11, with the decision coefficient of 0.976 and the root mean square error of 0.02 m between the estimated values and in-situ measured values. Selecting eight GOCI images from 8: 16 to 15: 16, the authors used Lee15 algorithm to get the spatial and temporal distribution characteristics of the diurnal variation ofZsd on the JZB. On the spatial distribution, the overall Zsd level of the JZB is low (0~4 m), and gradually increases from the inside to the outside of the Bay. On the time variations, the Zsd at the Bay mouth is obviously affected by the tides. The changes between the Bay mouth and the Bay outside are dominated by the solar zenith angle (SOLZ). The change of averageZsd of the JZB is mainly caused by the joint effect of the SOLZ and the tide. According to the respectively statistical analysis between the in-situ Zsd at each sampling station and simultaneously measured other environmental factors, the change in the Zsd of the JZB is the result of the joint action of multiple environmental factors, and has a strong positive correlation with the water depth, with correlation coefficient reaching 0.84, but it is negatively correlated with other environmental factors.

Keywords Secchi disk depth      GOCI image      semi-analytical algorithm      diurnal variation      environmental factors     
ZTFLH:  P76  
Corresponding Authors: YU Dingfeng     E-mail:;
Issue Date: 21 July 2021
E-mail this article
E-mail Alert
Articles by authors
Dingfeng YU
Xiaoyan LIU
Yingying GAI
Cite this article:   
Yan ZHOU,Dingfeng YU,Xiaoyan LIU, et al. Research on remote sensing retrieval and diurnal variation of Secchi disk depth of Jiaozhou Bay based on GOCI[J]. Remote Sensing for Land & Resources, 2021, 33(2): 108-115.
URL:     OR
Fig.1  Location of sampling stations in Jiaozhou Bay
Fig.2  In-situ Rrs values of sampling stations
Fig.3  Comparison of Rrs values between band-equivalent of in-situ measured and GOCI data after atomosphere correction
步骤 物理量 计算公式
1 rrs(λ) rrs(λ)=Rrs(λ)/(0.52+1.7R(λ))
2 u(λ) u ( λ ) = - g 0 + ( g 0 ) 2 + 4 g 1 r rs ( λ ) 2 g 1 ,g0=0.089, g1=0.125
Rrs(670)<0.001 5sr-1 (QAA_V5) Rrs(670)≥0.001 5sr-1 (QAA_V6)
3 a(λ0) a(λ0)=a(55x)=aw0)+ 10 h 0 + h 1 χ + h 2 χ 2
h0=-1.146, h1=-1.366, h2=-0.469
χ = lg r rs ( 443 ) + r ( 490 ) r rs ( 55 x ) + 5 r rs ( 670 ) r rs ( 490 ) r rs ( 670 )
= a ( 670 ) = a w ( 670 ) + 0.39 R rs ( 670 ) R rs ( 443 ) + R rs ( 490 ) 1.14
4 bbp(λ0) bbp(λ0)=bbp(55x)= u ( λ 0 ) - a ( λ 0 ) 1 - u ( λ 0 ) -bbw(55x) bbp(λ0)=bbp(670)= u ( λ 0 ) - a ( λ 0 ) 1 - u ( λ 0 ) -bbw(670)
5 η η = 2 . 0 1 - 1.2 exp - 0.9 r rs ( 443 ) r rs ( 55 x )
6 bbp(λ) bbp(λ)=bbp0) λ 0 λ η
7 a(λ) a(λ)=[1-u(λ)][bbw(λ)+bbp(λ)]/u(λ)
Tab.1  Steps of QAA_V6 to obtain absorption coefficient and scattering coefficient from remote sensing reflectance
Fig.4  Scatter plot of Zsd values of in-situ measured and model estimated
Fig.5  Spatio-temporal distribution of the Secchi disk depth of Jiaozhou Bay from 08: 16—15: 16 on May 16, 2017
Fig.6  Diurnal variation of Secchi disk depth, solar zenith angle and tide in Jiaozhou Bay
统计 [Chl-a]/
水深/m 海表温度/℃ 海表盐度 风速/(m·s-1)
最小值 1.12 3.40 0.161 2.00 15.20 0.296 0.20
最大值 4.30 45.30 0.453 41.40 22.30 0.320 7.50
中值 3.36 21.59 0.315 4.85 19.40 0.315 3.60
平均值±标准误差 3.06±0.21 24.07±3.17 0.319±0.019 10.62±3.00 19.20±0.47 0.312±0.002 3.72±0.55
标准差 0.90 13.44 0.082 12.71 1.99 0.008 2.34
变异系数 0.293 0.559 0.257 0.896 0.103 0.025 0.629
皮尔逊相关系数 -0.660 -0.816 -0.713 0.840 -0.805 -0.560 -0.484
Tab.2  Correlation analysis between in-situ measured Secchi disk depth and environmental factors
[1] Padial A A, Thomaz S M. Prediction of the light attenuation coefficient through the Secchi disk depth:Empirical modeling in two large neotropical ecosystems[J]. Limnology, 2008, 9(2):143-151.
doi: 10.1007/s10201-008-0246-4 url:
[2] Swift T J, Perez-Losada J, Schladow S G, et al. Water clarity modeling in Lake Tahoe:Linking suspended matter characteristics to Secchi depth[J]. Aquatic Sciences, 2006, 68(1):1-15.
doi: 10.1007/s00027-005-0798-x url:
[3] Swan B K, Reifel K M, Tiffany M A, et al. Spatial and temporal patterns of transparency and light attenuation in the Salton Sea,California,1997—1999[J]. Lake and Reservoir Management, 2007, 23(5):653-662.
doi: 10.1080/07438140709354044 url:
[4] Testa J M, Lyubchich V, Zhang Q. Patterns and trends in Secchi disk depth over three decades in the Chesapeake Bay estuarine complex[J]. Estuaries and Coasts, 2019, 42(4):927-943.
doi: 10.1007/s12237-019-00547-9 url:
[5] Kukushkin A S. Long-term seasonal variability of water transparency in the surface layer of the deep part of the Black Sea[J]. Russian Meteorology and Hydrology, 2014, 39(3):178-186.
doi: 10.3103/S1068373914030066 url:
[6] Wernand M R. On the history of the Secchi disc[J]. Journal of the European Optical Society:Rapid Publications, 2010, 5:10013.
[7] Li N, Shi K, Zhang Y L, et al. Decline in transparency of Lake Hongze from long-term MODIS observations:Possible causes and potential significance[J]. Remote Sensing, 2019, 11(2):177.
doi: 10.3390/rs11020177 url:
[8] Prasad K S, Bernstein R L, Kahru M, et al. Ocean color algorithms for estimating water clarity (Secchi Depth) from Sea WiFS[J]. Journal of Advanced Marine Science and Technology Society, 2000, 4(2):301-306.
[9] Kratzer S, Hkansson B, Sahlin C. Assessing secchi and photic zone depth in the baltic sea from satellite data[J]. AMBIO:A Journal of the Human Environment, 2003, 32(8):577-585.
doi: 10.1579/0044-7447-32.8.577 url:
[10] Tyler J E. The Secchi disc[J]. Limnology and Oceanography, 1968, VIII(1):1-6.
[11] Preisendorfer R W. Secchi disk science:Visual optics of natural waters[J]. Limnology and Oceanography, 1986, 31(5):909-926.
doi: 10.4319/lo.1986.31.5.0909 url:
[12] Doron M, Babin M, Hembise O, et al. Ocean transparency from space:Validation of algorithms using MERIS,MODIS and SeaWiFS data[J]. Remote Sensing of Environment, 2011, 115(12):2986-3001.
doi: 10.1016/j.rse.2011.05.019 url:
[13] Lee Z P, Shang S L, Hu C M, et al. Secchi disk depth:A new theory and mechanistic model for underwater visibility[J]. Remote Sensing of Environment, 2015, 169:139-149.
doi: 10.1016/j.rse.2015.08.002 url:
[14] Shang S, Lee Z, Shi L, et al. Changes in water clarity of the Bohai Sea:Observations from MODIS[J]. Remote Sensing of Environment, 2016, 186:22-31.
doi: 10.1016/j.rse.2016.08.020 url:
[15] Mao Y, Wang S Q, Qiu Z F, et al. Variations of transparency derived from GOCI in the Bohai Sea and the Yellow Sea[J]. Optics Express, 2018, 26(9):12191-12209.
doi: 10.1364/OE.26.012191 url:
[16] Luis K M A, Rheuban J E, Kavanaugh M T, et al. Capturing coastal water clarity variability with Landsat 8[J]. Marine Pollution Bulletin, 2019, 145:96-104.
doi: 10.1016/j.marpolbul.2019.04.078 url:
[17] Vundo A, Matsushita B, Jiang D, et al. An overall evaluation of water transparency in Lake Malawi from MERIS data[J]. Remote Sensing, 2019, 11(3):279.
doi: 10.3390/rs11030279 url:
[18] Gomes A C, Alcantara E, Rodrigues T, et al. Satellite estimates of euphotic zone and Secchi disk depths in a colored dissolved organic matter-dominated inland water[J]. Ecological Indicators, 2020, 110(b):105848.
doi: 10.1016/j.ecolind.2019.105848 url:
[19] 孙晓霞, 孙松, 张永山, 等. 胶州湾叶绿素a及初级生产力的长期变化[J]. 海洋与湖沼, 2011, 42(5):654-661.
[19] Sun X X, Sun S, Zhang Y S, et al. Long-term changes of chlorophyll-a concentration and primary productivity in the Jiaozhou Bay[J]. Oceanologia et Limnologia Sinica, 2011, 42(5):654-661.
[20] 董兆选, 娄安刚, 崔文连. 胶州湾海域营养状况研究[J]. 海洋科学, 2010, 34(12):36-39.
[20] Dong Z X, Lou A G, Cui W L. Assessment of eutrophication of Jiaozhou Bay[J]. Marine Sciences, 2010, 34(12):36-39.
[21] Mobley C D. Estimation of the remote-sensing reflectance from above-surface measurements[J]. Applied Optics, 1999, 38(36):7442-7455.
pmid: 18324298
[22] Lee Z P, Du K P, Arnone R, et al. Penetration of solar radiation in the upper ocean:A numerical model for oceanic and coastal waters[J]. Journal of Geophysical Research Oceans, 2005, 110(9):13.
[23] Lee Z P, Hu C M, Shang S L, et al. Penetration of UV-visible solar radiation in the global oceans:Insights from ocean color remote sensing[J]. Journal of Geophysical Research:Oceans, 2013, 118(9):4241-4255.
doi: 10.1002/jgrc.20308 url:
[24] Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure water II.integrating cavity measurements[J]. Applied Optics, 1997, 36(33):8710-23.
pmid: 18264420
[25] Smith R C, Baker K S. Optical properties of the clearest natural waters (200-800 nm)[J]. Applied Optics, 1981, 20(2):177-184.
doi: 10.1364/AO.20.000177 pmid: 20309088
[26] Morel A, Huot Y, Gentili B, et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach[J]. Remote Sensing of Environment, 2007, 111(1):69-88.
doi: 10.1016/j.rse.2007.03.012 url:
[27] 魏国妹, 商少凌, 李忠平, 等. 基于固有光学特性的北部湾透明度遥感反演及其检验[J]. 高技术通讯, 2009, 19(9):977-982.
[27] Wei G M, Shang S L, Lee Z P, et al. An IOP-based remote-sensing algorithm for secchi depth and its validation for the Gulf of Tonkin[J]. Chinese High Technology Letters, 2009, 19(9):977-982.
[28] 任玲, 张曼平, 李铁, 等. 胶州湾内外海水中营养盐的分布[J]. 青岛海洋大学学报(自然科学版), 1999, 29(4):692-698.
[28] Ren L, Zhang M P, Li T, et al. Distribution of nutrients inside and outside Jiaozhou Bay[J]. Journal of Ocean University of Qingdao, 1999, 29(4):692-698.
[29] Kirk J T O. Dependence of relationship between inherent and apparent optical properties of water on solar altitude[J]. Limnology and Oceanography, 1984, 29(2):350-356.
doi: 10.4319/lo.1984.29.2.0350 url:
[30] 丁文兰. 胶州湾的潮汐与潮流[J]. 海洋科学集刊, 1986, 26:1-25.
[30] Ding W L. Tides and currents in Jiaozhou Bay[J]. Studia Marina Sinica, 1986, 26:1-25.
[31] 康兴伦, 李培泉, 刘玉珊, 等. 胶州湾自净能力的研究[J]. 黄渤海海洋, 1990, 8(3):48-56.
[31] Kang X L, Li P Q, Liu Y S, et al. The study of self-purification capacity of Jiaozhou Bay[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1990, 8(3):48-56.
[32] Gattuso J-P, Gentili B, Duarte C M, et al. Light availability in the coastal ocean:Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production[J]. Biogeosciences, 2006, 3(4):489-513.
doi: 10.5194/bg-3-489-2006 url:
[1] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech