Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 136-142     DOI: 10.6046/zrzyyg.2020391
|
An improved method for thermal stress detection of coral bleaching in the South China Sea
LIU Bailu1(), GUAN Lei1,2()
1. College of Marine Technology/Faculty of Information Science and Engineering/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266100/572024, China
2. Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
Download: PDF(4497 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In recent years, coral bleaching events have frequently occurred globally due to global warming and other factors. However, the Coral Reef Watch (CRW) program established by the National Oceanic and Atmospheric Administration (NOAA) has underestimated the actual situation of coral bleaching in the South China Sea. Based on 180 cases of coral bleaching in the South China Sea and its surrounding waters since 1985, this paper obtains the optimum threshold combination by calculating the false negative rate (FNR), the false positive rate (FPR), and the accuracy (ACC) of different threshold combinations, thus improving the detection accuracy of coral bleaching events in the South China Sea. The results are as follows: (1) The FNR of the bleaching detecting results obtained using the NOAA threshold was 70.70%, indicating the long-term underestimation of the coral bleaching; (2) With the optimized critical threshold (CT) and alert threshold (AT), the ACC was improved from 58.13% to 73.90%, meanwhile the FNR and FPR were both less than 30%. As revealed by the coral bleaching event in the Nansha Islands in June 2007, the optimized thermal stress index can be used to effectively detect the event and mark the bleaching alarm level in time compared to the past underestimation. Therefore, the improved method for thermal threshold detection can improve the monitoring level of coral bleaching and are conducive to the management and protection of coral reefs in the South China Sea.

Keywords coral bleaching      the South China Sea      remote sensing      SST      thermal stress     
ZTFLH:  TP79P76  
Corresponding Authors: GUAN Lei     E-mail: bailu0126@stu.ouc.edu.cn;leiguan@ouc.edu.cn
Issue Date: 23 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bailu LIU
Lei GUAN
Cite this article:   
Bailu LIU,Lei GUAN. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020391     OR     https://www.gtzyyg.com/EN/Y2021/V33/I4/136
Fig.1  Sketch map of main coral reefs in the study area[17]
级别 定义 对珊瑚礁的影响
无压力 Hotspot≤0
观察 0<Hotspot<CT
白化警告 HotspotCT,DHW<AT 可能发生白化
白化警报 HotspotCT,DHWAT 极易发生白化
Tab.1  Coral bleaching thermal stress levels
Fig.2  FNR and FPR with different threshold combinations
Fig.3  ACC with different threshold combinations
Fig.4  DHW in the South China Sea
Fig.5  Maximum bleaching area level in seven days from June 19, 2007 to June 25, 2007 [16]
[1] Reaka-Kudla M L. The global biodiversity of coral reefs:A comparison with rain forests[M]//Reaka-Kudla M L,Wilson E O.Biodiversity Understanding and Protecting Our Biological Resources, Washington D C: National Academy Press, 1997:83-108.
[2] 李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007,27(5):2059-2069.
[2] Li S, Yu K F. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007,27(5):2059-2069.
[3] Wells J W. Scleractinia[M]//Moore R C.Treatise on invertebrate paleontology,Part F,Coelenterata,Geological Society of America and University of Kansas Press,Lawrence, 1956:F328-F444.
[4] Burke L, Reytar K, Spalding M, et al. Reefs at risk revisited[M]. Washington D C:World Resources Institute, 2011:1-144.
[5] Blunden J, Arndt D. State of the climate in 2017[J]. Bulletin of the American Meteorological Society, 2018,99:Si-S332.
doi: 10.1175/2018BAMSStateoftheClimate.1 url: https://journals.ametsoc.org/view/journals/bams/99/8/2018bamsstateoftheclimate.1.xml
[6] Eakin C M, Sweatman H P A, Brainard R E. The 2014—2017 global-scale coral bleaching event:Insights and impacts[J]. Coral Reefs, 2019,38:539-545.
doi: 10.1007/s00338-019-01844-2
[7] 张乔民, 余克服, 施祺, 等. 中国珊瑚礁分布和资源特点[C]//全国海洋高新技术产业化论坛, 2005.
[7] Zhang Q, Yu K, Shi Q, et al. Distribution and resource characteristics of coral reefs in China[C]//National marine high tech industrialization forum, 2005.
[8] 余克服. 南海珊瑚礁及其对全新世环境变化的记录与响应[J]. 中国科学:地球科学, 2012,42(8):1160-1172.
[8] Yu K F. Coral reefs in the South China Sea:Their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012,42(8):1160-1172.
[9] Glynn P W, D’Croz L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality[J]. Coral Reefs, 1990,8:181-191.
doi: 10.1007/BF00265009 url: http://link.springer.com/10.1007/BF00265009
[10] Berkelmans R, Willis B L. Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef[J]. Coral Reefs, 1999,18(3):219-228.
doi: 10.1007/s003380050186 url: http://link.springer.com/10.1007/s003380050186
[11] Strong A E, Liu G, Kimura T, et al. Detecting and monitoring 2001 coral reef bleaching events in Ryukyu Islands,Japan using satellite bleaching HotSpot remote sensing technique[C]//Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium.Toronto:IEEE, 2002:237-239.
[12] Manzello D P, Berkelmans R, Hendee J C. Coral bleaching indices and thresholds for the Florida Reef Tract,Bahamas,and St.Croix,US Virgin Islands[J]. Marine Pollution Bulletin, 2007,54(12):1923-1931.
pmid: 17931666
[13] Donner S D. An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events[J]. Ecological Applications, 2011,21:1718-1730.
doi: 10.1890/10-0107.1 url: http://doi.wiley.com/10.1890/10-0107.1
[14] Kleypas J A, Danabasoglu G, Lough J M. Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events[J]. Geophysical Research Letters, 2008,35(3):L03613
[15] Kumagai N H, Yamano H, Sango-Map-Project C. High-resolution modeling of thermal thresholds and environmental influences on coral bleaching for local and regional reef management[J]. Peerj, 2018,6:e4382.
doi: 10.7717/peerj.4382 url: https://peerj.com/articles/4382
[16] 李淑, 余克服, 陈天然, 等. 珊瑚共生虫黄藻密度结合卫星遥感分析2007年南沙群岛珊瑚热白化[J]. 科学通报, 2011,56(10):747-755.
[16] Li S, Yu K F, Chen T R, et al. Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the Nansha Islands,South China Sea[J]. Chinese Science Bulletin, 2011,56(10):747-755.
[17] Maturi E, Harris A, Mittaz J, et al. A new high-resolution sea surface temperature blended analysis[J]. Bulletin of the American Meteorological Society, 2017,98(5):1015-1026.
doi: 10.1175/BAMS-D-15-00002.1 url: https://journals.ametsoc.org/doi/10.1175/BAMS-D-15-00002.1
[18] Reefbase[DB/OL].[2020-08-10]. http://reefbase.org/main.aspx.
url: http://reefbase.org/main.aspx
[19] Donner S D, Rickbeil G J M, Heron S F. A new,high-resolution global mass coral bleaching database[J]. Plos One, 2017,12(4):e0175490.
doi: 10.1371/journal.pone.0175490 url: https://dx.plos.org/10.1371/journal.pone.0175490
[20] Wilkinson C. Status of coral reefs of the world:1998[M]. Cape Ferguson,Queensland,and Dampier,Western Australia:Australian Institute of Marine Science, 1998.
[21] Wilkinson C. Status of coral reefs of the world:2002[M]. Perth,Western Australia:Australian Institute of Marine Science, 2002.
[22] Wilkinson C. Status of coral reefs of the world:2008[M]. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre,Townsville,Australia, 2008: 296.
[23] Zuo X, Su F, Shi W, et al. The 2014 thermal stress event on offshore archipelagoes in the South China Sea[C]//IEEE International Geoscience & Remote Sensing Symposium.IEEE, 2015.
[24] 汤超莲, 李鸣, 郑兆勇, 等. 近45年涠洲岛5次珊瑚热白化的海洋站SST指标变化趋势分析[J]. 热带地理, 2010,30(06):577-581,586.
[24] Tang C L, Li M, Zheng Z Y, et al. An analysis on the trend of sea surface temperature indices for coral hot bleaching in Weizhou Island ocean observation station during 1966—2009[J]. Tropical Geography, 2010,30(06):577-581,586.
[25] Li X, Liu S, Huang H, et al. Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef,Sanya Bay,China[J]. Aquatic Ecosystem Health and Management, 2012,15(2):227-233.
doi: 10.1080/14634988.2012.687651 url: https://scholarlypublishingcollective.org/msup/aehm/article/15/2/227-233/169310
[26] 陈标. 西沙群岛2010年珊瑚热白化卫星遥感监测[C]//Proceedings of 2012 International Conference on Earth Science and Remote Sensing(ESRS 2012), 2012.
[26] Chen B. Satellite remote sensing monitoring coral bleaching during the 2010 bleaching event at Parcel Islands,South China Sea[C]//Proceedings of 2012 International Conference on Earth Science and Remote Sensing (ESRS 2012), 2012.
[27] Liu G, Heron S F, Eakin C M, et al. Reef-scale thermal stress monitoring of coral ecosystems:New 5-km global products from NOAA Coral Reef Watch[J]. Remote Sensing, 2014,6(12):1579-1160.
[28] Heron S F, Liu G, Eakin C M, et al. Climatology development for NOAA Coral Reef Watch’s 5-km product suite[R]//NOAA Technical Report NESDIS 145.NOAA/NESDIS.College Park, MD. 2015,21.
[29] Liu G, Rauenzahn J L, Heron S F, et al. NOAA Coral Reef Watch 50 km satellite sea surface temperature-based decision support system for coral bleaching management[R]//NOAA Technical Report NESDIS 143;NOAA/NESDIS:College Park,MD,USA, 2013,33.
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[6] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[7] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
[10] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[11] WANG Haiwen, JIA Junqing, LI Beichen, DONG Yongping, HA Sier. Assessing intensive urban land use based on remote sensing images and industry survey data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 149-156.
[12] LI Hemou, BAI Juan, GAN Fuping, LI Xianqing, WANG Zekun. River discharge estimation based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 16-24.
[13] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[14] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[15] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech