Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 265-276     DOI: 10.6046/zrzyyg.2021076
|
Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet
LIU Wen(), WANG Meng(), SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang
Sichuan Institute of Geological Survey (Key Laboratory of Evaluation and Utilization of Strategic Rare Metalsand Rare Earth Resource), Chengdu 610081, China
Download: PDF(11751 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Glaciers are widely distributed in southeast Tibet. Glacier instability is prominent in this region against the backdrop of global warming. Surveys of the potential hazards of ice avalanches using optical remote sensing are practically significant for disaster prevention and mitigation in the region. According to the hue, morphology, texture, and shadow characteristics of the potential hazards of ice avalanches on remote sensing images, this study established the symbols of remote sensing interpretation of potential hazards of ice avalanches in the study area. Based on this, a total of 232 potential hazards of ice avalanches were interpreted in southeast Tibet, including 47 large, 147 super large, and 38 giant ones. Then, this study analyzed the essential characteristics and spatial distribution of the potential hazards based on the characteristics of terrain, landform, and regional geological environment. Consequently, four concentrated distribution areas and two concentrated distribution zones were determined. The potential hazards of ice avalanches in the study area show distinct chain characteristics. According to the spatio-temporal relationships between the potential hazards and their possible secondary disasters, the ice avalanche disaster chains in southeast Tibet can be divided into three types, namely, ice avalanche - glacial lake outburst flood - debris flow disaster chains, ice avalanche - debris flow - barrier lake - flood disaster chains, and ice avalanche - debris flow disaster chains. Taking the potential hazard chains of ice avalanches in Miduigou, Jianmupuqu, and Zelongnonggou as examples, this study analyzed the dynamic change characteristics and chain structure of these potential hazard chains using optical remote sensing technology. The purpose is to provide basic data for an in-depth study on potential hazards of ice avalanches in southeast Tibet.

Keywords optical remote sensing      potential hazards of ice avalanches      disaster chain      southeast Tibet     
ZTFLH:  TP79  
Corresponding Authors: WANG Meng     E-mail: liuwen2009.hi@163.com;wangmengscrs@qq.com
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen LIU
Meng WANG
Ban SONG
Tianbin YU
Xichao HUANG
Yu JIANG
Yujiang SUN
Cite this article:   
Wen LIU,Meng WANG,Ban SONG, et al. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021076     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/265
数据
范围
数据源 分辨
率/m
时相 用途



研究
Landsat8 15 2017年11月20日—2020年11月20日 用于研究区冰崩隐患区域性光学遥感解译
GF-1 2 2014年1月2日—2020年11月15日
尖母
普曲
WorldView-2 0.5 2006年4月30日 用于尖母普曲典型点光学遥感解译
GF-1 2 2015年7月25日
GF-1B 2 2019年11月7日
则隆
弄沟
WorldView-2 0.5 2017年12月4日 用于则隆弄沟典型点光学遥感解译
GF-2 0.8 2019年6月2日
无人机航摄 0.2 2020年10月20日
米堆
WorldView-2 0.5 2001年11月14日 用于米堆沟典型点光学遥感解译
WorldView-2 0.5 2013年2月12日
WorldView-2 0.5 2014年11月8日
WorldView-2 0.5 2015年2月7日
WorldView-2 0.5 2017年12月12日
无人机航摄 0.2 2020年10月31日
Tab.1  List of optical remote sensing data
Fig.1  Distribution of ice avalanche disaster in study area
类型 直接解译标志 间接解译标志
颜色 形态 冰裂隙发育情况 (潜在)冰崩体位置
冰崩隐患点 白色、灰色 舌形、长条形、梨形、不规则形等 以横裂隙为主,侧裂隙和纵裂隙次之 多位于冰川末端 潜在冰崩区前缘往往呈陡坎状或发育跌水坎,与斜坡前缘高差大
已发生的冰崩灾害 冰崩前呈白色、灰色,冰崩后呈浅灰色、暗棕色 冰崩前呈舌形、长条形、不规则形 冰崩前可见冰裂隙 多位于冰川末端 地势较陡,堆积区与周围地质体在色调、地貌上有明显差异
冰崩前呈白色、灰色,冰崩后呈暗褐色 冰崩前呈舌形、长条形、不规则形 冰崩前可见冰裂隙 多位于冰川末端 地势较陡,冰崩灾害发生后有明显铲刮区,堆积物堵塞沟道,局部形成堰塞湖
冰崩前呈白色、灰色,冰崩后呈暗棕色 冰崩前呈舌形、近三角形、不规则形 冰崩前可见冰裂隙 多位于冰川末端 地势较陡,冰崩导致冰湖溃决,溃口与周围岩体在色调、纹理上有明显差异
Tab.2  List of signs for optical remote sensing interpretation of ice avalanche
Fig.2  Remote sensing interpretation map of Miduigou
Fig.3  Comparison of multiphase remote sensing images of ice crevasse and glacial lake in Midui Glacier
Fig.4  Remote sensing interpretation map of Jianmupuqu
Fig.5  Comparison of multiphase remote sensing images of debris flow fans, potential ice avalanches and channel sources in Jianmupuqu
Fig.6  Remote sensing interpretation map of Zelongnonggou
Fig.7  Comparison of multiphase remote sensing images of debris flow fans and channel sources in Zelongnonggou
[1] 童立强, 裴丽鑫, 涂杰楠, 等. 冰崩灾害的界定与类型划分——以青藏高原地区为例[J]. 自然资源遥感, 2020, 32(2):11-18.doi: 10.6046/gtzyyg.2020.02.02.
doi: 10.6046/gtzyyg.2020.02.02
[1] Tong L Q, Pei L X, Tu J N, et al. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region[J]. Remote Sensing for Land and Resources, 2020, 32(2):11-18.doi: 10.6046/gtzyyg.2020.02.02.
doi: 10.6046/gtzyyg.2020.02.02
[2] Sangewar C V. Remote sensing applications to study Indian glaciers[J]. Geocarto International, 2012, 27(3):197-206.
doi: 10.1080/10106049.2011.617841 url: http://www.tandfonline.com/doi/abs/10.1080/10106049.2011.617841
[3] Leinss S, Bernardini E, Jacquemart M, et al. Glacier detachments and rock-ice avalanches in the Petra Pervogo range,Tajikistan (1973—2019)[J]. Natural Hazards and Earth System Sciences, 2021, 21(5):1409-1429.
[4] Gilbert A, Leinss S, Kargel J, et al. Mechanisms leading to the 2016 giant twin glacier collapses,Aru Range,Tibet[J]. The Cryosphere, 2018, 12(9):2883-2900.
doi: 10.5194/tc-12-2883-2018 url: https://tc.copernicus.org/articles/12/2883/2018/
[5] Kääb A, Leinss S, Gilbert A, et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability[J]. Nature Geoscience, 2018, 11(2):114-120.
doi: 10.1038/s41561-017-0039-7 url: https://doi.org/10.1038/s41561-017-0039-7
[6] Wang S, Yang B, Zhou Y, et al. Snow cover mapping and ice avalanche monitoring from the satellite data of the sentinels[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII- 3:1765-1772.
[7] Margreth S, Funk M, Tobler D, et al. Analysis of the hazard caused by ice avalanches from the hanging glacier on the Eiger west face[J]. Cold Regions Science and Technology, 2017, 144:63-72.
doi: 10.1016/j.coldregions.2017.05.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0165232X1630369X
[8] 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11):1203-1209.
[8] Yao T D, Wu G J, Xu B Q, et al. Asian water tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1203-1209.
[9] 姚檀栋, 余武生, 邬光剑, 等. 青藏高原及周边地区近期冰川状态失常与灾变风险[J]. 科学通报, 2019, 64(27):2770-2782.
[9] Yao T D, Yu W S, Wu G J, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64(27):2770-2782.
[10] 裴丽鑫. 青藏高原地区冰崩灾害特征与类型的初步研究[D]. 北京:中国地质大学(北京),2019.
[10] Pei L X. The preliminary study of characteristics and types of ice avalanche disaster in the Tibetan Plateau[D]. Beijing:China University of Geosciences(Beijing),2019.
[11] 胡文涛, 姚檀栋, 余武生, 等. 高亚洲地区冰崩灾害的研究进展[J]. 冰川冻土, 2018, 40(6):1141-1152.
[11] Hu W T, Yao T D, Yu W S, et al. Advances in the study of glacier avalanches in high Asia[J]. Journal of Glaciology and Geocryology, 2018, 40(6):1141-1152.
[12] Geng Q R, Pan G T, Zheng L L, et al. The eastern Himalayan syntaxis:Major tectonic domains,ophiolitic mélanges and geologic evolution[J]. Journal of Asian Earth Sciences, 2006, 27(3):265-285.
doi: 10.1016/j.jseaes.2005.03.009 url: https://linkinghub.elsevier.com/retrieve/pii/S1367912005000878
[13] Deng Q D, Zhang P Z, Ran Y K, et al. Basic characteristics of active tectonics of China[J]. Science in China Series D:Earth Sciences, 2003, 46(4):356-372.
[14] Ding L, Zhong D L, Yin A, et al. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa)[J]. Earth and Planetary Science Letters, 2001, 192(3):423-438.
doi: 10.1016/S0012-821X(01)00463-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0012821X01004630
[15] 刘金花, 易朝路, 李英奎. 藏南卡鲁雄峰枪勇冰川新冰期冰川发育探讨[J]. 第四纪研究, 2018, 38(2):348-354.
[15] Liu J H, Yi C L, Li Y K. Reconstruction of the neoglacial glaciers in the Qiangyong valley,Mt.Kaluxung,south Tibet[J]. Quaternary Sciences, 2018, 38(2):348-354.
[16] Röthlisberger H. Ice avalanches[J]. Journal of Glaciology, 1977, 19(81):669-671.
doi: 10.1017/S0022143000029580 url: https://www.cambridge.org/core/product/identifier/S0022143000029580/type/journal_article
[17] 黄宗理, 张良弼. 地球科学大辞典——应用学科卷[M]. 北京: 地质出版社, 2005.
[17] Huang Z L, Zhang L B. A dictionary of earth sciences[M]. Beijing: Geological Press, 2005.
[18] 刘建康, 张佳佳, 高波, 等. 我国西藏地区冰湖溃决灾害综述[J]. 冰川冻土, 2019, 41(6):1335-1347.
[18] Liu J K, Zhang J J, Gao B, et al. An overview of glacial lake outburst flood in Tibet,China[J]. Journal of Glaciology and Geocryolo-gy, 2019, 41(6):1335-1347.
[1] ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
[2] YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
[3] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[4] WANG Mi, PAN Jun. A NEW COLOR BALANCE METHOD FOR LARGE-SCALE SEAMLESS IMAGE DATABASE[J]. REMOTE SENSING FOR LAND & RESOURCES, 2006, 18(4): 10-13.
[5] QI Xue-Yong, TIAN Qing-Jiu. THE ADVANCES IN THE STUDY OF ATMOSPHERIC
CORRECTION FOR OPTICAL REMOTE SENSING
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2005, 17(4): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech