Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (2) : 1-9     DOI: 10.6046/zrzyyg.2021126
|
A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics
YAN Hongbo1,2(), WEI Wanqiu1, LU Xianjian1,2(), YANG Zhigao1, LI Zhenbao1
1. College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
2. Guangxi Laboratory of Spatial Information and Mapping, Guilin 541004,China
Download: PDF(1215 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The rapid and accurate estimation of soil water content at different spatial and temporal scales is key research content in the fields of hydrology, environment, geology, agriculture, and climate change. However, it is still a challenge to obtain accurate soil water content presently. In the past, the traditional point-based soil sampling and analysis methods were time-consuming and laborious. By contrast, retrieving soil water content using remote sensing images has the advantages of a wide range, high timeliness, low cost, and strong dynamic contrast. In hyperspectral remote sensing, soil water content is related to the wavelength range of soil reflectance. So far, many methods have been used to describe the relationships between soil water content and hyperspectral remote sensing. This paper summarized existing methods for estimating soil water content based on hyperspectral reflectance and divided them into four categories: spectral reflectance methods, function methods, model methods, and machine learning methods. Moreover, this paper compared and analyzed the potential and limitations of different methods in terms of accuracy, complexity, auxiliary data requirements, operability under different modes, and the dependence on soil types. Finally, this study put forward corresponding suggestions for future research on the relationships between soil water content and hyperspectral reflectance.

Keywords hyperspectral      diffuse reflectance      reflectance      soil water content      optical remote sensing     
ZTFLH:  TP79  
Corresponding Authors: LU Xianjian     E-mail: 56403075@qq.com;285922956@qq.com
Issue Date: 20 June 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongbo YAN
Wanqiu WEI
Xianjian LU
Zhigao YANG
Zhenbao LI
Cite this article:   
Hongbo YAN,Wanqiu WEI,Xianjian LU, et al. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021126     OR     https://www.gtzyyg.com/EN/Y2022/V34/I2/1
Fig.1  Variation of θ - R
Fig.2  Different classification methods of θ-R relationships
类别 方法 波长/nm N R2② RMSE 代表性文献 优点 缺点
波谱反射率法 反射率差分指数法 2 062,2 250 18 0.69 0.08 Haubrock等[1] 土壤类型影响小 计算相对复杂
反射率指数模型法 350~2 500 4 - - Lobell等[10] 短波红外范围应用良好 不适用土壤体积含水量低于20%的情况
反射率比值指数法 1 944 18 0.68 0.08 刘伟东等[13] 计算方便快速 依赖干燥土壤光谱信息
反射率一阶导数法 1 834,1 836 18 0.63 0.08 刘伟东等[13] 无需先验土壤信息 产生冗余的光谱信息
相对反射率法 1 998 10 0.84 0.04 刘伟东[15] 计算简单快速 不适用于野外
反射率物理模型法 350~2 100 1 >0.99 - van Genuchten[27] 考虑到土壤的物理特性 需获取特定初始信息,应用具有局限性
函数法 反高斯函数法 1 200~2 500 257 0.92 0.03 Whiting等[29] 可以结合各类高光谱模式使用 难以确定输入信息,须对光谱进行额外处理
模型法 光学模型法 350~2 100 1 >0.97 - Haubrock等[1] 无需考虑高光谱反射率 应用具有局限性
机器学习法 SMLR 1 623~2 467 1 571 0.88 5.19 申艳等[38] 减少变量间的共线性问题 信息易丢失,导致模型的过适应性
PCR 400~2 498 802 0.84 0.005 申艳等[38] 应用全部的光谱信息 计算繁琐
PLSR 401~1 699 360 0.97 0.02 Svante等[40]
830~2 630 403 0.96 0.60 李晓明[39] 应用全部的光谱信息 无法解释土壤光谱间的非线性效应
370~1 979 1 160 0.66 0.76 Svante等[40]
ANN 420~800 - 0.77 2.00 Leila等[45] 自动学习分析,无需基础辅助参数 容易过度拟合
SVMR 370~1 979 1 160 0.69 0.72 Vapnik等[46] 无需基础辅助参数 仅适用于密集型计算
MLR 450~2 500 40 0.68~0.96 - 贾学勤等[47] 不受土壤类型影响 忽略某些点的光谱信息
MARS 370~1 979 1 160 0.73 0.67 Friedman[48] 自动建立联系,无需基础辅助参数 过程繁琐
Tab.1  Comparison of different methods for estimating soil water content using hyperspectral characteristics
[1] Haubrock S N, Chabrillat S, Lemmnitz C, et al. Surface soil moisture quantification models from reflectance data under field conditions[J]. International Journal of Remote Sensing, 2008, 29(1):3-29.
doi: 10.1080/01431160701294695 url: https://www.tandfonline.com/doi/full/10.1080/01431160701294695
[2] Reynolds S G. The gravimetric method of soil moisture determination Part III:An examination of factors influencing soil moisture variability[J]. Journal of Hydrology, 1970, 3(11):288-300.
[3] Ledieu J, Ridder P, Clerck P, et al. A method of measuring soil moisture by time-domain reflectometry[J]. Journal of Hydrology, 1986, 88(3/4):319-328.
doi: 10.1016/0022-1694(86)90097-1 url: https://linkinghub.elsevier.com/retrieve/pii/0022169486900971
[4] Chanasyk D S, Naeth M A. Field measurement of soil moisture using neutron probes[J]. Canadian Journal of Soil Science, 1996, 76(3):317-323.
doi: 10.4141/cjss96-038 url: http://www.nrcresearchpress.com/doi/10.4141/cjss96-038
[5] Dean T J, Bell J P, Baty J B. Soil moisture measurement by an improved 400 capacitance technique,Part I.Sensor design and performance[J]. Journal of Hydrology, 1987, 401(1-2):67-78.
[6] Engman E T. Applications of microwave remote sensing of soil moisture for water resources and agriculture[J]. Remote Sensing of Environment, 1991, 35(2-3):213-226.
doi: 10.1016/0034-4257(91)90013-V url: https://linkinghub.elsevier.com/retrieve/pii/003442579190013V
[7] Qin Y, Liu X N, Jonathan L, et al. Lithology identification of the north Qilian belt by surface temperature and spectral emissivity information derived from ASTER TIR data[J]. International Journal of Remote Sensing Applications, 2013, 3(4):235-239.
[8] Wang X, Venugopal G. Optical fiber meta magnetics[J]. Optics Express, 2011, 19(21):19813-19821.
doi: 10.1364/OE.19.019813 pmid: 21996989
[9] Sandholt I, Kjeld R, Jens A. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing of Environment, 2002, 79(2):213-224.
doi: 10.1016/S0034-4257(01)00274-7 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425701002747
[10] Lobell D B, Asner G P. View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS[J]. International Journal of Remote Sensing, 2002, 23(11):2247-2262.
doi: 10.1080/01431160110075613 url: https://www.tandfonline.com/doi/full/10.1080/01431160110075613
[11] Stevens A, Marco N. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy[J]. PLoS ONE, 2013, 8(6):337-347.
[12] Dalal R C, Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland.II.Total organic carbon and its rate of loss from the soil profile[J]. Soil Research, 1986, 24(2):281-292.
doi: 10.1071/SR9860281 url: http://www.publish.csiro.au/?paper=SR9860281
[13] 刘伟东, Baret F, 张兵, 等. 应用高光谱遥感数据估算土壤表层水分的研究[J]. 遥感学报, 2004, 8(5):434-442.
[13] Liu W D, Barnet F, Zhang B, et al. Study on the estimation of soil surface water by hyperspectral remote sensing data[J]. Journal of Remote Sensing, 2004, 8(5):434-442.
[14] Haubrock S N, Chabrillat S. Surface soil moisture quantification models from reflectance data under field conditions[J]. International Journal of Remote Sensing, 2008, 29(1):3-29.
doi: 10.1080/01431160701294695 url: https://www.tandfonline.com/doi/full/10.1080/01431160701294695
[15] 刘伟东. 高光谱遥感土壤信息提取与挖掘研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2002.
[15] Liu W D. Extraction and mining of soil information from hyperspectral remote sensing[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2002.
[16] Etienne M, Henri D. Modeling soil moisture-reflectance[J]. Remote Sensing of Environment, 2001, 76(2):173-180.
doi: 10.1016/S0034-4257(00)00198-X url: https://linkinghub.elsevier.com/retrieve/pii/S003442570000198X
[17] Bob S B, Raphael A, Viscarra R, et al. Visible and near infrared spectroscopy in soil science[J]. Advances in Agronomy, 2010, 107:163-215.
[18] Sarathjith M C, Bhabani S D, et al. Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution[J]. Soil Science Society of America Journal, 2014, 78(2):369-376.
doi: 10.2136/sssaj2013.08.0377 url: http://doi.wiley.com/10.2136/sssaj2013.08.0377
[19] Tian J, Philpot W D. Relationship between surface soil water content,evaporation rate,and water absorption band depths in SWIR reflectance spectra[J]. Remote Sensing of Environment, 2015, 169:280-289.
doi: 10.1016/j.rse.2015.08.007 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571530095X
[20] Bablet A, Vu P V, Jacquemoud S, et al. MARMIT:A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400-2 500 nm)[J]. Remote Sensing of Environment, 2018, 217:1-17.
doi: 10.1016/j.rse.2018.07.031 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718303651
[21] Gao C, Xu M, Xu H Z Y, et al. Retrieving photometric properties and soil moisture content of tidal flats using bidirectional spectral reflectance[J]. Remote Sensing, 2021, 13(7):1402.
doi: 10.3390/rs13071402 url: https://www.mdpi.com/2072-4292/13/7/1402
[22] 刘伟东, Baret F, 张兵, 等. 高光谱遥感土壤湿度信息提取研究[J]. 土壤学报, 2004, 5:700-706.
[22] Liu W D, Baret F, Zhang B, et al. Extraction of soil moisture information from hyperspectral remote sensing[J]. Acta Pedologica Sinica, 2004, 5:700-706.
[23] Tian J, Yue J B, Philpot W D, et al. Soil moisture content estimate with drying process segmentation using shortwave infrared bands[J]. Remote Sensing of Environment, 2021, 263:112552.
doi: 10.1016/j.rse.2021.112552 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425721002728
[24] Yue J B, Tian J, Qing J T, et al. Development of soil moisture indices from differences in water absorption between shortwave-infrared bands[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154:216-230.
doi: 10.1016/j.isprsjprs.2019.06.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271619301522
[25] Fabre S, Xavier B. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4-2.5 mm domain[J]. Sensors, 2015, 15:3262-3281.
doi: 10.3390/s150203262 url: http://www.mdpi.com/1424-8220/15/2/3262
[26] Lobell D B, Gregory P A. Moisture effects on soil reflectance[J]. Soil Science Society of America Journal, 2002, 66(3):722.
doi: 10.2136/sssaj2002.7220 url: https://onlinelibrary.wiley.com/doi/10.2136/sssaj2002.7220
[27] van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5):892-898.
doi: 10.2136/sssaj1980.03615995004400050002x url: http://doi.wiley.com/10.2136/sssaj1980.03615995004400050002x
[28] Nolet C, Ate P, Peter R, et al. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand[J]. PLoS ONE, 2014, 9(11):112-151.
[29] Whiting M L, Lin L, Susan L U. Predicting water content using Gaussian model on soil spectra[J]. Remote Sensing of Environment, 2004, 89:535-552.
doi: 10.1016/j.rse.2003.11.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425703003468
[30] Philpot W D. Spectral reflectance of wetted soils[C]// Proceedings of Art,Science and Applications of Reflectance Spectroscopy (ASARS), 2010:1-12.
[31] Segelstein D J. The complex refractive index of water[D]. Kansas: University of Missouri, 1981.
[32] Kou L H, Daniel L, Petry C R. Indices of water and ice in the 0.65 to 2.5 mm spectral range[J]. Applied Optics, 1993, 32(19):3531-3540.
doi: 10.1364/AO.32.003531 pmid: 20829977
[33] Nolet C, Poortinga A, Roosjen P, et al. Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand[J]. PLoS ONE, 2014, 9(11):112-151.
[34] Sadeghi M, Jones S B, Philpot W D. A linear physically-based model for remote sensing of soil moisture using short wave infrared bands[J]. Remote Sensing of Environment, 2015, 164:66-76.
doi: 10.1016/j.rse.2015.04.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715001364
[35] Dalal R C, Henry R J. Simultaneous determination of moisture,organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J]. Soil Science Society of America Journal, 1986, 50(1):120-123.
doi: 10.2136/sssaj1986.03615995005000010023x url: http://doi.wiley.com/10.2136/sssaj1986.03615995005000010023x
[36] 王涛, 喻彩丽, 姚娜, 等. MLR和PLSR的沙壤土盐分含量光谱检测对比研究[J]. 干旱区地理, 2018, 41(6):1295-1302.
[36] Wang T, Yu C L, Yao N, et al. Comparative study on spectral detection of salt content in sandy loam soil by MLR and PLSR[J]. Arid Land Geography, 2018, 41(6):1295-1302.
[37] Chang C W, David H. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J]. Soil Science Society of America Journal, 2001, 65(2):480-490.
doi: 10.2136/sssaj2001.652480x url: http://doi.wiley.com/10.2136/sssaj2001.652480x
[38] 申艳, 张晓平, 梁爱珍, 等. 近红外光谱法在土壤有机质研究中的应用[J]. 核农学报, 2010, 24(1):199-207.
[38] Shen Y, Zhang X P, Liang A Z, et al. Application of near infrared spectroscopy in soil organic matter research[J]. Acta Nucifera Sinica, 2010, 24(1):199-207.
[39] 李晓明. 基于PLSR的土壤水分光谱特征研究[J]. 西部大开发(土地开发工程研究), 2017, 2(9):49-54.
[39] Li X M. Spectral characteristics of soil moisture based on PLSR[J]. Western Development (Land Development Engineering), 2017, 2(9):49-54.
[40] Svante W, Michael S, Lennart E. PLS-regression:A basic tool of chemometrics[J]. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2):109-130.
doi: 10.1016/S0169-7439(01)00155-1 url: https://linkinghub.elsevier.com/retrieve/pii/S0169743901001551
[41] Mouazen A M, Karoui R. Potential of visible and near-infrared spectroscopy to derive colour groups utilising the munsell soil colour charts[J]. Biosystems Engineering, 2007, 97(2):131-141.
doi: 10.1016/j.biosystemseng.2007.03.023 url: https://linkinghub.elsevier.com/retrieve/pii/S1537511007001110
[42] Nawar S, Mouazen A M. Comparison between random forests,artificial neural networks and gradient boosted machines methods of on-line VIS-NIR spectroscopy measurements of soil total nitrogen and total carbon[J]. Sensors, 2017, 17(10):2428.
doi: 10.3390/s17102428 url: http://www.mdpi.com/1424-8220/17/10/2428
[43] 尚天浩, 贾萍萍, 孙媛, 等. 宁夏银北地区盐碱化土壤水分光谱特征及模型拟合精度分析[J]. 水土保持通报, 2020, 40(4):183-189.
[43] Shang T H, Jia P P, Sun Y, et al. Spectral characteristics and model fitting accuracy of saline alkali soil water in Yinbei area of Ningxia[J]. Bulletin of Soil and Water Conservation, 2020, 40(4):183-189.
[44] 吴士文, 王昌昆, 刘娅, 等. 高光谱成像的土壤剖面水分含量反演及制图[J]. 光谱学与光谱分析, 2019, 39(9):2847-2854.
[44] Wu S W, Wang C K, Liu Y, et al. Retrieval and mapping of soil moisture content in hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2019, 39(9):2847-2854.
[45] Leila H E, Alfonso T R. Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks[J]. Remote Sensing, 2015, 7(3):2627-2646.
doi: 10.3390/rs70302627 url: http://www.mdpi.com/2072-4292/7/3/2627
[46] Vapnik V, Chapelle O. Bounds on error expectation for support vector machines[J]. Neural Computation, 2000, 12(9):2013-2036.
pmid: 10976137
[47] 贾学勤, 冯美臣, 杨武德, 等. 基于SPA-MLR方法的土壤含水量光谱预测模型研究[J]. 干旱地区农业研究, 2018, 36(3):266-269,291.
[47] Jia X Q, Feng M C, Yang W D, et al. Study on spectral prediction model of soil water content based on SPA-MLR method[J]. Agricultural Research in Arid Areas, 2018, 36(3):266-269,291.
[48] Friedman J H. Multivariate adaptive regression splines[J]. The Annals of Statistics, 1991, 19(1):1-67.
[49] Kůrková V. Kolmogorov’s theorem and multilayer neural networks[J]. Neural Networks, 1992, 5(3):501-506.
doi: 10.1016/0893-6080(92)90012-8 url: https://linkinghub.elsevier.com/retrieve/pii/0893608092900128
[50] Sarathjith M C, Bhabani S D, Hitesh B V, et al. Diffuse reflectance spectroscopic approach for the characterization of soil aggregate size distribution[J]. Soil Science Society of America Journal, 2014, 78(2):369-376.
doi: 10.2136/sssaj2013.08.0377 url: http://doi.wiley.com/10.2136/sssaj2013.08.0377
[51] 翁永玲, 戚浩平, 方洪宾, 等. 基PLSR方法的青海茶卡—共和盆地土壤盐分高光谱遥感反演[J]. 土壤学报, 2010, 47(6):1255-1263.
[51] Weng Y L, Qi H P, Fang H B, et al. Hyperspectral remote sensing inversion of soil salinity in Chaka Gonghe basin of Qinghai Province based on PLSR method[J]. Acta Pedologica Sinica, 2010, 47(6):1255-1263.
[52] 朱亚星, 周桢津, 洪永胜, 等. 耦合高光谱数据估算土壤含水率的方法[J]. 华中师范大学学报(自然科学版), 2017, 51(1):123-129.
[52] Zhu Y X, Zhou Z J, Hong Y S, et al. Method for estimating soil moisture content by coupling hyperspectral data[J]. Journal of Central China Normal University (Natural Science Edition), 2017, 51(1):123-129.
[53] Kaingo J, Nganga I K. Prediction of soil moisture-holding capacity with support vector machines in dry subhumid tropics[J]. Applied and Environmental Soil Science, 2018:1-10.
[54] Balabin R M, Ekaterina I L. Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry ? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data[J]. Analyst, 2011, 136:1703-1712.
doi: 10.1039/c0an00387e pmid: 21350755
[55] Thissen U, Bülent U, Willem J M, et al. Multivariate calibration with least-squares support vector machines[J]. Analytical Chemistry, 2004, 76(11):3099-3105.
pmid: 15167788
[56] Nawar S, Abdul M M. Predictive performance of mobile VIS-NIR infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques[J]. Catena, 2017, 151:118-129.
doi: 10.1016/j.catena.2016.12.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0341816216305288
[57] 胡振琪, 张学礼. 基于ANN的复垦土壤水分特征曲线的预测研究[J]. 农业工程学报, 2008(10):15-19.
[57] Hu Z Q, Zhang X L. Prediction of reclaimed soil water characteristic curve based on ANN[J]. Journal of Agricultural Engineering, 2008(10):15-19.
[1] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[2] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[3] XU Qingyun, LI Ying, TAN Jing, ZHANG Zhe. Information extraction method of mangrove forests based on GF-6 data[J]. Remote Sensing for Natural Resources, 2023, 35(1): 41-48.
[4] ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
[5] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[6] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[7] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[8] SUN Xiao, PENG Junhuan, ZHAO Feng, WANG Xiaoyang, LYU Jie, ZHANG Dengfeng. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
[9] WANG Jie, WANG Guanghui, LIU Yu, QI Jianwei, ZHANG Tao. Construction of new vegetation water index based on PROSPECT-VISIR model[J]. Remote Sensing for Natural Resources, 2022, 34(2): 56-62.
[10] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[11] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[12] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[13] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech