Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 81-89     DOI: 10.6046/zrzyyg.2022065
|
Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model
LI Li(), HU Ruike(), LI Suhong
School of Economy and Management, Hebei University of Technology, Tianjin 300401, China
Download: PDF(3288 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

A rational land use plan is of great significance for avoiding high carbon emissions. The simulations of land use optimization from the perspective of low-carbon economy are conducive to the development of green economy and the scientific allocation of land resources. Taking Beijing as an example, this study incorporated the points of interest (POI) into the BP-ANN algorithm module of the FLUS model and verified the simulation accuracy of the improved model through comparison using the land use data of 2010 and 2020. On this basis, by coupling the Markov method and the order preference by similarity ideal solution (TOPSIS) method, this study simulated and analyzed the structure and spatial layout of land quantity in the study area in 2030 under the natural evolution scenario and the low-carbon economy scenario. The results show that: ① Compared with those of the original FLUS model, the Kappa coefficient and the overall accuracy of the improved model by incorporating POI data increased by 4.85% and 3.42%, respectively. These results indicate that the improved model had higher simulation accuracy. ② The simulation results verified that, under the natural evolution scenario, the carbon emission and the land for construction would increase by 7.70% and 7.68%, respectively, and the areas of farmland and grassland would continue to decline. ③ Under the low-carbon economy scenario, the carbon emissions would be reduced by 198.49×104 t, the continuous expansion trend of construction land would be curbed, the occupation of grassland in low mountainous areas would be mitigated, and the area of forest land in the north would increase significantly. The results show that the simulation accuracy of the land use model would change with urban development elements and that the incorporation of POI data helped to provide more effective decision support for land planning. The low-carbon economy-oriented land structure adjustment and spatial layout optimization can be used as a reference for the rational use, planning, and layout of regional lands.

Keywords POI data      FLUS model      scenario simulation      low-carbon economy     
ZTFLH:  TP79  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Li LI
Ruike HU
Suhong LI
Cite this article:   
Li LI,Ruike HU,Suhong LI. Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model[J]. Remote Sensing for Natural Resources, 2023, 35(1): 81-89.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022065     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/81
数据类型 数据内容 数据来源及处理方式
统计数据 2011—2021年的相关土地利用数据; 历年能源消耗标准煤数量、各产业产值 《北京统计年鉴(2011—2021年)》
规划数据 耕地红线、生态空间约束等规划信息 《北京城市总体规划(2016—2035年)》等相关文件
土地利用数据 2010年和2020年2期土地利用遥感数据 来自GlobeLand30(全球地理信息公共产品),在ArcGIS软件中对原始数据进行镶嵌、裁剪,并将土地类型重分类为耕地、林地、草地、建设用地、水域和其他用地
驱动因子数据 自然地理 高程、坡度、坡向 DEM数据由地理空间数据云平台获得,并在ArcGIS软件中对原始DEM数据进一步处理得到坡度、坡向数据
交通可达性 到河流、主要道路、国道、高速、铁路的距离 路网数据来自OSM地图,在ArcGIS软件中采用欧氏距离工具进行处理得到可达性驱动因子
社会经济 GDP、人口密度 来源于中国科学院资源环境科学与数据中心,在ArcGIS软件中进行重采样处理
POI大数据 餐饮服务密度、政府/社会机构密度、住宅密度、酒店密度、科教文化服务密度、金融保险服务密度、公共交通设施密度、购物商超密度、公司企业密度、公共设施密度 采用北京大学开发研究数据平台于2018年发布的POI数据作为数据源,并于2021年9月通过高德开放平台API接口抓取POI数据作为进一步补充,将其分为10类,使用ArcGIS软件的核密度分析工具对其进行处理
Tab.1  Data description
Fig.1  Driving factors of land use change in the study area
情景 耕地 林地 草地 水域 建设用地 其他用地
自然演变情景 0.1 0.3 0.2 0.4 1.0 0.1
低碳经济情景 0.2 0.6 0.5 0.5 0.9 0.2
Tab.2  Neighborhood weight parameters under different scenarios
模拟方法 耕地 林地 草地 水域 建设用地 其他用地
实际值 栅格数/102 1 534.81 3 318.37 374.77 339.07 1 563.44 162.87
原模型模拟 栅格数/102 1 628.75 3 401.98 389.41 331.09 1 421.46 120.64
模拟误差/% 6.12 2.52 3.91 2.35 9.08 25.93
改进模型模拟 栅格数/102 1 625.37 3 389.12 389.05 331.67 1 435.72 122.40
模拟误差/% 5.90 2.13 3.81 2.18 8.17 24.85
Tab.3  Comparison of simulation results of land use in the study area in 2020
Fig.2  Comparison between improved model and original model
变量 名称 土地利用现状(2020年) 情景1(2030年自然演变情景) 情景2(2030年低碳经济情景)
X1 耕地/hm2 345 331.70 323 879.47 325 176.40
X2 林地/hm2 746 634.08 747 136.34 756 537.52
X3 草地/hm2 84 323.67 82 049.36 82 508.40
X4 建设用地/hm2 351 774.06 378 795.06 366 955.98
X5 水域/hm2 76 291.41 71 957.61 72 504.60
X6 其他用地/hm2 36 645.08 37 183.14 37 317.10
F1(x) 经济效益/万元 364 059 651.83 391 530 894.60 379 492 633.73
F2(x) 碳排放量/t 58 541 616.80 63 047 593.81 61 062 740.35
Tab.4  Land use structure under different scenarios
Fig.3  Simulation results of land use layout in the study area in 2030
[1] Wang G Z, Han Q, Bauke D V. The multi-objective spatial optimization of urban land use based on low-carbon city planning[J]. Ecological Indicators, 2021, 125:107540.
doi: 10.1016/j.ecolind.2021.107540 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X21002053
[2] 马晓哲, 王铮. 土地利用变化对区域碳源汇的影响研究进展[J]. 生态学报, 2015, 35(17):5898-5907.
[2] Ma X Z, Wang Z. Progress in the study on the impact of land-use change on regional carbon sources and sinks[J]. Acta Ecological Sinica, 2015, 35(17):5898-5907.
[3] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15.
[3] Hu A G. China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology(Social Science Edition), 2021, 21(3):1-15.
[4] Han D, Qiao R L, Ma X M. Optimization of land-use structure based on the trade-off between carbon emission targets and economic development in Shenzhen,China[J]. Sustainability, 2018, 11(1):1-17.
doi: 10.3390/su11010001 url: http://www.mdpi.com/2071-1050/11/1/1
[5] 张雪花, 许文博, 张宝安. 雄安新区对京津冀城市群低碳协同发展促进作用预评估[J]. 经济地理, 2020, 40(3):16-23,83.
[5] Zhang X H, Xu W B, Zhang B A. Pre-evaluation of the role of Xiongan New District in the low carbon synergy development of Beijing-Tianjin-Hebei urban agglomeration[J]. Economic Geo-graphy, 2020, 40(3):16-23,83.
[6] 许小亮, 李鑫, 肖长江, 等. 基于CLUE-S模型的不同情景下区域土地利用布局优化[J]. 生态学报, 2016, 36(17):5401-5410.
[6] Xu X L, Li X, Xiao C J, et al. Land use layout optimization under different scenarios by using the CLUE-S model[J]. Acta Ecologica Sinica, 2016, 36(17):5401-5410.
[7] 王昊煜, 高培超, 谢一茹, 等. 基于改进型NSGA-Ⅱ算法的西宁市土地利用多目标优化[J]. 地理与地理信息科学, 2020, 36(6):84-89.
[7] Wang H Y, Gao P C, Xie Y R, et al. Multi-objective optimization of land use in Xining City based on improve NSGA-Ⅱ[J]. Geography and Geo-Information Science, 2020, 36(6):84-89.
[8] Wang M, Dong Z Y, Wei X, et al. Optimization of the spatial pattern of land use in mountain towns: A case study of Yuexi County,Anqing City,Anhui Province[J]. IOP Conference Series:Earth and Environmental Science, 2020, 569:012085.
doi: 10.1088/1755-1315/569/1/012085
[9] 曾永年, 王慧敏. 以低碳为目标的海东市土地利用结构优化方案[J]. 资源科学, 2015, 37(10):2010-2017.
[9] Zeng Y N, Wang H M. Optimization of land use structure for low-carbon targets in Haidong City,Qinghai Plateau[J]. Resources Science, 2015, 37(10):2010-2017.
[10] Zhu J, Sun Y Z, Song S Y, et al. Cellular automata for simulating land-use change with a constrained irregular space representation:A case study in Nanjing City,China[J]. Environment and Planning B:Urban Analytics and City Science, 2021, 48(7):1841-1859.
doi: 10.1177/2399808320949889 url: http://journals.sagepub.com/doi/10.1177/2399808320949889
[11] Luo G P, Yin C Y, Chen X, et al. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale:A case study of Sangong watershed in Xinjiang,China[J]. Ecological Complexity, 2010, 7(2):198-207.
doi: 10.1016/j.ecocom.2010.02.001 url: https://linkinghub.elsevier.com/retrieve/pii/S1476945X10000024
[12] 王志远, 张考, 丁志鹏, 等. 纳入动态数据的改进FLUS模型在城市增长边界划定中的应用[J]. 地球信息科学学报, 2020, 22(12):2326-2337.
doi: 10.12082/dqxxkx.2020.200373
[12] Wang Z Y, Zhang K, Ding Z P, et al. Delimitation of urban growth boundary based on improved FLUS model considering dynamic data[J]. Journal of Geo-Information Science, 2020, 22(12): 2326-2337.
[13] 宋世雄, 梁小英, 陈海, 等. 基于多智能体和土地转换模型的耕地撂荒模拟研究——以陕西省米脂县为例[J]. 自然资源学报, 2018, 33(3):515-525.
doi: 10.11849/zrzyxb.20170040
[13] Song S X, Liang X Y, Chen H, et al. The simulation of cropland abandonment based on multi-agent system and land transformation model:A case study of Mizhi County,Shaanxi Province[J]. Journal of Natural Resources, 2018, 33(3):515-525.
[14] Liu X P, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116.
doi: 10.1016/j.landurbplan.2017.09.019 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204617302396
[15] 苏迎庆, 刘庚, 赵景波, 等. 基于FLUS模型的汾河流域生态空间多情景模拟预测[J]. 干旱区研究, 2021, 38(4):1152-1161.
[15] Su Y Q, Liu G, Zhao J B, et al. Multi-scenario simulation prediction of ecological space in Fenhe River basin based on FLUS model[J]. Arid Zone Research, 2021, 38(4):1152-1161.
[16] 曹帅, 金晓斌, 杨绪红, 等. 耦合MOP与GeoSOS-FLUS模型的县级土地利用结构与布局复合优化[J]. 自然资源学报, 2019, 34(6):1171-1185.
doi: 10.31497/zrzyxb.20190604
[16] Cao S, Jin X B, Yang X H, et al. Coupled MOP and GeoSOS-FLUS models research on optimization of land use structure and layout in Jintan District[J]. Journal of Natural Resources, 2019, 34(6):1171-1185.
doi: 10.31497/zrzyxb.20190604
[17] 张经度, 梅志雄, 吕佳慧, 等. 纳入空间自相关的FLUS模型在土地利用变化多情景模拟中的应用[J]. 地球信息科学学报, 2020, 22(3):531-542.
doi: 10.12082/dqxxkx.2020.190359
[17] Zhang J D, Mei Z X, Lyu J H, et al. Simulating multiple land use scenarios based on the FLUS model considering spatial autocorrelation[J]. Journal of Geo-Information Science, 2020, 22(3): 531-542.
[18] 程雨薇. 基于改进FLUS模型的杭州市土地利用格局模拟[D]. 杭州: 浙江大学, 2019.
[18] Cheng Y W. Lang use simulation in Hangzhou based on improved FLUS model[D]. Hangzhou: Zhejiang University, 2019.
[19] Miao R M, Wang Y X, Li S. Analyzing urban spatial patterns and functional zones using Sina Weibo POI Data:A case study of Beijing[J]. Sustainability, 2021, 13(2):1-15.
doi: 10.3390/su13010001 url: https://www.mdpi.com/2071-1050/13/1/1
[20] 罗紫薇, 胡希军, 韦宝婧, 等. 基于多准则CA-Markov模型的城市景观格局演变与预测——以上杭县城区为例[J]. 经济地理, 2020, 40(10):58-66.
[20] Luo Z W, Hu X J, Wei B J, et al. Urban landscape pattern evolution and prediction based on multi-criteria CA-Markov model: Take Shanghang County as an example[J]. Economic Geography, 2020, 40(10):58-66.
[21] 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3):397-409.
[21] Liu X J, Li X, Liang X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39 (3):397-409.
doi: 10.13284/j.cnki.rddl.003138
[22] 王旭, 马伯文, 李丹, 等. 基于FLUS模型的湖北省生态空间多情景模拟预测[J]. 自然资源学报, 2020, 35(1):230-242.
doi: 10.31497/zrzyxb.20200119
[22] Wang X, Ma B W, Li D, et al. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model[J]. Journal of Natural Resources, 2020, 35(1):230-242.
doi: 10.31497/zrzyxb.20200119
[23] Liang X, Liu X P, Li X, et al. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method[J]. Landscape and Urban Planning, 2018, 177:47-63.
doi: 10.1016/j.landurbplan.2018.04.016 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204618302627
[1] WANG Zheng, JIA Gongxu, ZHANG Qingling, HUANG Yue. Impacts of COVID-19 epidemic on the spatial distribution of GDP contributed by secondary and tertiary industries in Guangdong Province in the first quarter of 2020[J]. Remote Sensing for Natural Resources, 2021, 33(3): 184-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech