Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (2) : 236-244     DOI: 10.6046/zrzyyg.2022082
|
Suitability regionalization of Myrica rubra planting in Zhejiang Province
ZHONG Le1(), ZENG Yan2,3(), QIU Xinfa1, SHI Guoping4
1. School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
2. Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210008, China
3. Nanjing Joint Institute for Atmospheric Sciences, Nanjing 210008, China
4. School of Geography, Nanjing University of Information Science & Technology, Nanjing 210044, China
Download: PDF(4302 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Myrica rubra is a specialty crop in Zhejiang Province. Its cultivation area in Zhejiang ranks first in China. This study aims to comprehensively investigate and analyze the suitability of Myrica rubra planting in Zhejiang and better serve the Myrica rubra planting by scientifically using modern meteorological observation data. Based on the distributed simulation of climate factors, this study introduced the influencing factors related to soil and terrain and determined the weights of these factors through the analytic hierarchy process (AHP). Then, in combination with the suitability grade indices of various influencing factors, this study divided Zhejiang into regions suitable, fairly suitable, and unsuitable for Myrica rubra planting. The results are as follows: Regions with a suitable climate occupy most of Zhejiang, indicating superior climate resources; Zhejiang Province enjoys excellent soil conditions and roughly varies between regions fairly suitable and suitable for Myrica rubra planting regarding soil conditions; The terrain varies greatly and is a key factor in the suitability of precise Myrica rubra planting. The regions with suitable terrains have altitudes of 250~450 m and slopes of 5°~25°; Except for northern Zhejiang and the boundary between Shaoxing and Ningbo cities, Zhejiang is suitable or fairly suitable for Myrica rubra planting. This study achieved the spatial simulation of meteorological factors, thus providing data support for the development and improvement of the Myrica rubra planting layout in Zhejiang and being of great practical significance for improving the yield and quality of Myrica rubra.

Keywords Myrica rubra      distributed simulation      suitability regionalization      geographic information system (GIS)     
ZTFLH:  TP79  
Issue Date: 07 July 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Le ZHONG
Yan ZENG
Xinfa QIU
Guoping SHI
Cite this article:   
Le ZHONG,Yan ZENG,Xinfa QIU, et al. Suitability regionalization of Myrica rubra planting in Zhejiang Province[J]. Remote Sensing for Natural Resources, 2023, 35(2): 236-244.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022082     OR     https://www.gtzyyg.com/EN/Y2023/V35/I2/236
Fig.1  Topographic map and remote sensing image of Zhejiang Province
Fig.2  Suitability evaluation system of Myrica rubra planting in Zhejiang Province
区划因子 因子初始权重
(因子类别内权重)
因子类
别权重
因子最终
权重系数
年平均气温 0.246 1 0.231 0 0.056 9
≥10 ℃年积温 0.239 9 0.055 4
一月平均最低气温 0.087 6 0.020 2
年降水量 0.426 3 0.098 5
土壤pH值 0.333 3 0.264 4 0.088 1
土壤质地 0.666 7 0.176 3
高度 0.539 6 0.504 5 0.272 3
坡度 0.297 0 0.149 8
坡向 0.163 4 0.082 5
Tab.1  Weights of regionalization factors for Myrica rubra planting in Zhejiang Province
因子类别 因子 适宜 较适宜 不适宜
气候因子 年平均气温/℃ 15.9≤x1≤20 (14≤x1<15.9)∪(20<x1≤21) (x1<14)∪(x>21)
≥10 ℃年积温/(℃·d) x2≥5 050 4 500≤x2<5 050 x2<4 500
一月平均最低气温/℃ x3≥-7.5 -9.7≤x3<-7.5 x3<-9.7
年平均降水量/mm x4≥1 300 1 000≤x4<1 300 x4<1 300
壤因子 土壤pH值 5.5≤x5≤6.5 (4.5≤x5<5.5)∪(6.5<x5<7) (1<x5<4.5)∪(7≤x5<15)
土壤质地 砾质土、砂质黏土 (黏)壤土 黏土、壤质黏土
地形因子 海拔/m 270≤x7≤440 (0≤x7<270)∪(440<x7≤500) x7>500
坡度/(°) 5≤x8≤25 (0≤x8<5)∪(25<x8≤30) (30<x8<90)
坡向 北/东北 西北/东/东南 南/西/西南
Tab.2  Grade quantization of each regionalization index
Fig.3  Spatial distribution model of meteorological influencing factors
气候因子 平均绝对误差 平均相对误差/%
年平均气温/℃ 0.39 2.67
≥10 ℃年积温/(℃·d) 291.82 6.96
一月平均最低气温/℃ 0.27 2.13
年平均降水量/mm 82.13 6.08
Tab.3  Simulationerrors of climate factors
Fig.4  Distribution of climate suitability of Myrica rubra cultivation
Fig.5  Distribution of soil suitability of Myrica rubra cultivation
Fig.6  Distribution of terrain suitability of Myrica rubra cultivation
Fig.7  Suitability distribution of Myrica rubra cultivation
序列 县级行政区 序列 县级行政区
1 云和县 11 泰顺县
2 常山县 12 瓯海区
3 瑞安市 13 衢江区
4 平阳县 14 景宁畲族自治县
5 开化县 15 松阳县
6 青田县 16 龙游县
7 苍南县 17 永嘉县
8 文成县 18 乐清市
9 龙泉市 19 永康市
10 江山市 20 武义县
Tab.4  County ranking of suitability regionalization of Myrica rubra cultivation
[1] 金志凤, 王立宏, 冯涛, 等. 浙江省杨梅生产中主要农业气象灾害及防御措施[J]. 中国农学通报, 2007, 23(6):638-641.
[1] Jin Z F, Wang L H, Feng T, et al. Major agricultural meteorological disasters and prevention of Myrica rubra in Zhejiang[J]. Chinese Agricultural Science Bulletin, 2007, 23(6):638-641.
doi: 10.11924/j.issn.1000-6850.0706638
[2] 李松平, 金志凤, 冯涛. 浙江杨梅主产地气候资源和气候变化特征[J]. 浙江农业学报, 2008(3):199-202.
[2] Li S P, Jin Z F, Feng T. Characteristics of climatic resources and climatic change about main product districts of Myrica rubra in Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2008(3):199-202.
[3] 杨照渠. 浙江省杨梅生产现状与发展对策[J]. 中国果业信息, 2003, 19(4):5-6.
[3] Yang Z Q. Production status and development countermeasures of Myrica rubra in Zhejiang[J]. China Fruit News, 2003, 19(4):5-6.
[4] 梁森苗, 朱婷婷, 张淑文, 等. 主要农业气象灾害对杨梅生长的影响及防止措施[J]. 现代园艺, 2021, 44(3):122-124.
[4] Liang S M, Zhu T T, Zhang S W, et al. Effects on the growth of Myrica rubra and preventive measures from major agrometeorological disasters[J]. Modern Horticulture, 2021, 44(3):122-124.
[5] 何新华, 陈力耕, 陈怡, 等. 中国杨梅资源及利用研究评述[J]. 果树学报, 2004, 21(5):467-471.
[5] He X H, Chen L G, Chen Y, et al. Review on germplasm resources of Myrica and their exploitation in China[J]. Journal of Fruit Science, 2004, 21(5):467-471.
[6] 康志雄, 骆文坚, 吕爱华, 等. 杨梅栽培气候区划与应用研究[J]. 果树学报, 2002(2):118-122.
[6] Kang Z X, Luo W J, Lyu A H, et al. On the climatic regionalization for growing Myrica rubra in China[J]. Journal of Fruit Science, 2002(2):118-122.
[7] 金志凤, 封秀燕, 陈士平. 大棚气温变化特征及其对杨梅生育期的影响[J]. 浙江农业科学, 2004(2):7-9.
[7] Jin Z F, Feng X Y, Chen S P. Change characteristics of indoor temperature and its effects on growing period of Chinese bayberry (Myrica rubra) in plastic-house[J]. Acta Agriculturae Zhejiangensis, 2004(2):7-9.
[8] 尤建林. 丁岙杨梅在临海市的引种表现及主要栽培技术[J]. 现代园艺, 2021, 44(1):97-98.
[8] You J L. Introduction performance and main cultivation techniques of Ding’ao Myrica rubra in Linhai[J]. Modern Horticulture, 2021, 44(1):97-98.
[9] 陈守智, 李正丽, 徐丽梅, 等. 云南省杨梅生态区划的研究[J]. 云南农业大学学报(自然科学), 2004, 19(3):307-310.
[9] Chen S Z, Li Z L, Xu L M, et al. The climatic ecological regionalization of Myrica rubra in Yunnan Province[J]. Journal of Yunnan Agricultural University(Natural Science), 2004, 19(3):307-310.
[10] 陈志银. 浙江省杨梅气候生态区划的研究[J]. 浙江农业大学学报, 1993(2):139-144.
[10] Chen Z Y. Climatic ecological regionalization of bayberry in Zhejiang Province[J]. Journal of Zhejiang Agricultural University, 1993(2):139-144.
[11] 金志凤, 杨忠恩, 赵宏波, 等. 基于气候-地形-土壤因子和GIS技术的浙江省香榧种植综合区划[J]. 林业科学, 2012, 48(1):42-47.
[11] Jin Z F, Yang Z E, Zhao H B, et al. Comprehensive regionalization of Torreya grandis Merrillii cultivation based on climate,terrain and soil factors by GIS technology in Zhejiang Province[J]. Scientia Silvae Sinicae, 2012, 48(1):42-47.
[12] 李丽纯, 陈福梓, 王加义, 等. 基于GIS的台湾青枣在福建引扩种的气候适宜性区划[J]. 中国生态农业学报, 2017, 25(1):47-54.
[12] Li L C, Chen F Z, Wang J Y, et al. Climate suitability regionalization for Taiwan green jujube introduction and expansion in Fujian Province using GIS[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1):47-54.
[13] Zhang S, Liu X, Wang X, et al. Evaluation of coffee ecological adaptability using fuzzy,AHP,and GIS in Yunnan Province,China[J]. Arabian Journal of Geosciences, 2021, 14(14):1366.
doi: 10.1007/s12517-021-07795-9
[14] 金志凤, 邓睿, 黄敬峰. 基于GIS的浙江杨梅种植区划[J]. 农业工程学报, 2008(8):214-218.
[14] Jin Z F, Deng R, Huang J F. Regional planning for planting Myrica rubra based on GIS in Zhejiang Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008(8):214-218.
[15] 陈志银, 叶明儿. 杨梅生长的气候条件初探[J]. 浙江气象, 1989(3):37-39.
[15] Chen Z Y, Ye M E. Preliminary study on the climatic conditions of Myrica rubra[J]. Journal of Zhejiang Meteorology, 1989(3):37-39.
[16] 吴秀娟, 李亚华. 峡江县种植杨梅的气候条件分析[J]. 安徽农学通报, 2010, 16(16):133-134.
[16] Wu X J, Li Y H. Analysis on climatic conditions of planting of Myrica rubra in Xiajiang[J]. Auhui Agricultural Science Bulletin, 2010, 16(16):133-134.
[17] 陈志银. 海拔高度对杨梅花期和品质的影响初探[J]. 浙江大学学报(农业与生命科学版), 1989(3):82-84.
[17] Chen Z Y. A Preliminary study on the influence of altitude on the flowering period and quality of Myrica rubra[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 1989(3):82-84.
[18] 缪松林. 不同土壤质地对杨梅生长和结果的影响[J]. 中国果树, 1987(4):7-10.
[18] Miao S L. Effects of different soil textures on the growth and fruiting of Myrica Rubra[J]. China Fruits, 1987(4):7-10.
[19] 秦遂初, 王海龙, 史建武, 等. 杨梅立地条件的调查研究[J]. 浙江农业科学, 1989(4):183-186.
[19] Qin S C, Wang H L, Shi J W, et al. Investigation and research on Myrica rubra site conditions[J]. Acta Agriculturae Zhejiangensis, 1989(4):183-186.
[20] 崔寒, 高习, 魏狄樊. 南安市杨梅种植的气候条件和种植区划分析[J]. 福建热作科技, 2019, 44(4):54-56.
[20] Cui H, Gao X, Wei D F. Analysis about the climate condition and planting zones of Chinese Waxmyrtle at Nan’an Municiple[J]. Fujian Science & Technology of Tropical Crops, 2019, 44(4):54-56.
[21] 缪松林. 中国杨梅生态区划研究[J]. 浙江农业大学学报, 1995(4):366-372.
[21] Miao S L. Study on ecological regionalization of Myrica rubra in China[J]. Journal of Zhejiang Agricultural University, 1995(4):366-372.
[22] 阮志文, 吴春燕, 黄建英, 等. 江西省分宜县引种杨梅的气侯条件分析[J]. 园艺与种苗, 2012(6):58-61.
[22] Ruan Z W, Wu C Y, Huang J Y, et al. Analysis of climatic conditions for introducing Bayberry in Fenyi County of Jiangxi Province[J]. Horticulture & Seed, 2012(6):58-61.
[23] 刘瑛, 毛予晖, 魏勇. 气象因素对杨梅的影响与园地选择技术[J]. 农技服务, 2009, 26(12):111-112,145.
[23] Liu Y, Mao Y H, Wei Y. The influence of meteorological factors on Bayberry and garden selection techniques[J]. Agricultural Technology Service, 2009, 26(12):111-112,145.
[24] 林海明, 张文霖. 主成分分析与因子分析的异同和SPSS软件——兼与刘玉玫、卢纹岱等同志商榷[J]. 统计研究, 2005(3):65-69.
[24] Lin H M, Zhang W L. Differences and similarites between principal component analysis and factor analysis and SPSS software[J]. Statistical Research, 2005(3):65-69.
[25] 韩小孩, 张耀辉, 孙福军, 等. 基于主成分分析的指标权重确定方法[J]. 四川兵工学报, 2012, 33(10):124-126.
[25] Han X H, Zhang Y H, Sun F J, et al. A method for determining index weights based on principal component analysis[J]. Journal of Sichuan Ordance Zngineerirg, 2012, 33(10):124-126.
[26] 赵玉灵. 基于层次分析法的矿山环境评价方法研究——以海南岛为例[J]. 国土资源遥感, 2020, 32(1):148-153.doi:10.6046/gtzyyg.2020.01.20.
doi: 10.6046/gtzyyg.2020.01.20
[26] Zhao Y L. Study and application of analytic hierarchy process of mine geological environment:A case study in Hainan Island[J]. Remote Sensing for Land and Resources, 2020, 32(1):148-153.doi:10.6046/gtzyyg.2020.01.20.
doi: 10.6046/gtzyyg.2020.01.20
[27] 张晓东, 刘湘南, 赵志鹏, 等. 基于层次分析法的盐池县地质灾害危险性评价[J]. 国土资源遥感, 2019, 31(3):183-192.doi:10.6046/gtzyyg.2019.03.23.
doi: 10.6046/gtzyyg.2019.03.23
[27] Zhang X D, Liu X N, Zhao Z P, et al. Geological disaster hazard assessment in Yanchi County based on AHP[J]. Remote Sensing for Land and Resources, 2019, 31(3):183-192.doi:10.6046/gtzyyg.2019.03.23.
doi: 10.6046/gtzyyg.2019.03.23
[28] 王丹丹, 邱新法, 曾燕, 等. 基于分布式模型模拟的茶树种植适宜性区划[J]. 气象科学, 2018, 38(1):121-129.
[28] Wang D D, Qiu X F, Zeng Y, et al. Suitability regionalization of tea trees cultivation based on distributed model simulation[J]. Scientia Meteorologica Sinica, 2018, 38(1):121-129.
[29] 邱新法, 仇月萍, 曾燕. 重庆山地月平均气温空间分布模拟研究[J]. 地球科学进展, 2009, 24(6):621-628.
doi: 10.11867/j.issn.1001-8166.2009.06.0621
[29] Qiu X F, Qiu Y P, Zeng Y. Distributed modeling of monthly mean air temperature of rugged terrain of Chongqing[J]. Advances in Earth Sciences, 2009, 24(6):621-628.
[30] 李梦洁. 浙江省山地热量资源分布式模拟[D]. 南京: 南京信息工程大学, 2008.
[30] Li M J. The simulation of terrain heat resources in Zhejiang Province[D]. Nanjing: Nanjing University of Information Science & Technology, 2008.
[31] 潘虹, 邱新法, 高婷, 等. 基于TRMM和NCEP-FNL数据的降水估算研究[J]. 水土保持研究, 2014, 21(2):116-122.
[31] Pan H, Qiu X F, Gao T, et al. Study on the estimation of precipitation with the data of TRMM and NCEP-FNL[J]. Research of Soil and Water Conservation, 2014, 21(2):116-122.
[32] 覃纹, 黄秋燕, 覃志豪, 等. 广西糖料蔗种植区干旱遥感时空分析[J]. 自然资源遥感, 2022, 34(2):261-270.doi:10.6046/zrzyyg.2021191.
doi: 10.6046/zrzyyg.2021191
[32] Qin W, Huang Q Y, Qin Z H, et al. Spatiotemporal analysis of drought in sugarcane planting areas of Guangxi by remote sensing[J]. Remote Sensing for Natural Resources, 2022, 34(2):261-270.doi:10.6046/zrzyyg.2021191.
doi: 10.6046/zrzyyg.2021191
[33] 王月如, 韩鹏鹏, 关舒婧, 等. 基于Landsat8 OLI数据的富贵竹种植区域信息提取[J]. 国土资源遥感, 2019, 31(1):133-140.doi:10.6046/gtzyyg.2019.01.18.
doi: 10.6046/gtzyyg.2019.01.18
[33] Wang Y R, Han P P, Guan S J, et al. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land and Resources, 2019, 31(1):133-140.doi:10.6046/gtzyyg.2019.01.18.
doi: 10.6046/gtzyyg.2019.01.18
[34] 黄佩, 普军伟, 赵巧巧, 等. 植被遥感信息提取方法研究进展及发展趋势[J]. 自然资源遥感, 2022, 34(2):10-19.doi:10.6046/zrzyyg.2021137.
doi: 10.6046/zrzyyg.2021137
[34] Huang P, Pu J W, Zhao Q Q, et al. Research progress and development trend of remote sensing information extraction methods of vegetation[J]. Remote Sensing for Natural Resources, 2022, 34(2):10-19.doi:10.6046/zrzyyg.2021137.
doi: 10.6046/zrzyyg.2021137
[1] SHAO Qiufang, PENG Peihao, HUANG Jie, LIU Zhi, SUN Xiaofei, SHAO Huaiyong. Monitoring eco-environmental vulnerability in Anning River Basin in the upper reaches of the Yangtze River using remote sensing techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 175-181.
[2] CHEN Qi, ZHAO Zhifang, HE Binxian, WANG Di, XI Jing. Environmental recovery and management planning based on RS and GIS techniques: A case study of the Yuanyang gold mining area in Yunnan Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 167-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech