Please wait a minute...
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (2) : 230-235     DOI: 10.6046/zrzyyg.2022129
Investigation and applications of rocky desertification based on GF-5 hyperspectral data
LI Na1(), GAN Fuping1(), DONG Xinfeng1, LI Juan2, ZHANG Shifan3, LI Tongtong3
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083, China
2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
3. School of Earth Sciences and Resource, China University of Geosciences (Beijing), Beijing 100083, China
Download: PDF(4480 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Rocky desertification is the primary eco-environmental problem in Karst mountainous areas in southwestern China. Scientific measures must be formulated to comprehensively promote the prevention and control of rocky desertification. Remote sensing technology, which enjoys the advantages of rapid positioning, wide coverage, and economic efficiency, has become an important technical method for investigating the spatial distribution of regional rocky desertification. Therefore, this study extracted three key indices used to characterize rocky desertification information (i.e., vegetation coverage, bedrock exposure rate, and soil coverage) of the study area using the pixel unmixing method based on GF-5 hyperspectral data and the spectral index method based on Landsat8 multispectral data. The results show that information on vegetation coverage can be accurately extracted from the two types of satellite remote sensing data. However, Landsat8 multispectral data are difficult to distinguish information about exposed bedrocks from that of bare soil due to their band setting and spectral resolution. By contrast, GF-5 hyperspectral data enable the direct and effective extraction of bedrock exposure rate and soil coverage, as well as the accurate identification of mineral components such as calcite and dolomite in exposed bedrocks. The results of this study can provide a scientific and effective technical and theoretical basis for the evaluation, classification, and comprehensive control of rocky desertification.

Keywords rocky desertification      GF-5      pixel unmixing      Landsat8     
ZTFLH:  TP79  
Issue Date: 07 July 2023
E-mail this article
E-mail Alert
Articles by authors
Fuping GAN
Xinfeng DONG
Juan LI
Shifan ZHANG
Tongtong LI
Cite this article:   
Na LI,Fuping GAN,Xinfeng DONG, et al. Investigation and applications of rocky desertification based on GF-5 hyperspectral data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 230-235.
URL:     OR
Fig.1  Location of the study area
波段类型 波段范围/nm 波段数/个 波谱分辨率/nm
VNIR 390~1 029 150 5
SWIR 1 005~2 513 180 10
Tab.1  Main technical indicators of hyperspectral camera onboard GF-5
Fig.2  Vegetation coverage,soil coverage and bedrock exposure rate of GF-5 data
Fig.3  Distribution of calcite and dolomite
Fig.4  Image spectrum of verification points,ASD curve of field samples and photo of rocky desertification area
Fig.5  Vegetation coverage,soil coverage and bedrock exposure rate of Landsat8 data
[1] 冯淑娜. 基于多端元混合像元分解的喀斯特石漠化表征因子提取研究[D]. 北京: 中国矿业大学(北京), 2015.
[1] Feng S N. Extraction of characterization factors of Karst rocky desertification based on multi terminal mixed pixel decomposition[D]. Beijing: China University of Mining and Technology (Beijing), 2015.
[2] 鞠建华, 戴传固. 岩溶石漠化遥感监测与防护规划[M]. 北京: 地质出版社, 2006.
[2] Ju J H, Dai C G. Remote sensing monitoring and protection planning of Karst rocky desertification[M]. Beijing: Geological Publishing House, 2006.
[3] Xie L W, Zhong J, Chen F F, et al. Evaluation of soil fertility in the succession of Karst rocky desertification using principal component analysis[J]. Solid Earth, 2015, 6(2):515-524.
doi: 10.5194/se-6-515-2015 url:
[4] Lian Y Q, You J Y, Lin K R, et al. Characteristics of climate change in southwest China Karst region and their potential environmental impacts[J]. Environmental Earth Sciences, 2015, 74(2):937-944.
doi: 10.1007/s12665-014-3847-8 url:
[5] Cao J H, Yuan D X, Tong L Q, et al. An overview of Karst ecosystem in Southwest China:Current state and future management[J]. Journal of Resource sand Ecology, 2015, 6 (4):247-256.
[6] 陈起伟, 兰安军, 熊康宁, 等. 基于遥感光谱特征的喀斯特石漠化信息提取[J]. 贵州师范大学学报(自然科学版), 2003(4):82-87.
[6] Chen Q W, Lan A J, Xiong K N, et al. Extraction of Karst rocky desertification information based on remote sensing spectral features[J]. Journal of Guizhou Normal University (Natural Science Edition), 2003(4):82-87.
[7] 陈飞, 周德全, 白晓永, 等. 典型喀斯特槽谷区石漠化时空演变及未来情景模拟[J]. 农业资源与环境学报, 2018, 35(2):174-180.
[7] Chen F, Zhou D Q, Bai X Y, et al. Temporal and spatial evolution and future scenario simulation of rocky desertification in typical Karst valley area[J]. Journal of Agricultural Resources and Environment, 2018, 35(2):174-180.
[8] Benz U, Baatz M, Schreier G. OSCAR - object oriented segmentation and classification of advanced Radar allow automated information extraction[C]// 2001 International Geoscience and Remote Sensing Symposium (IGARSS), 2001:1913-1915.
[9] 岳跃民, 张兵, 王克林, 等. 石漠化遥感评价因子提取研究[J]. 遥感学报, 2011, 15(4):722-736.
[9] Yue Y M, Zhang B, Wang K L, et al. Study on extraction of remote sensing evaluation factors of rocky desertification[J]. Journal of Remote Sensing, 2011, 15(4):722-736.
[10] 杨苏新, 张霞, 帅通, 等. 基于混合像元分解的喀斯特石漠化地物丰度估测[J]. 遥感技术与应用, 2014, 29(5):823-832.
[10] Yang S X, Zhang X, Shuai T, et al. Abundance estimation of Karst rocky desertification based on mixed pixel decomposition[J]. Remote Sensing Technology and Application, 2014, 29(5):823-832.
[11] Nouri T, Oskouei M M. Processing of Hyperion data set for detection of indicative minerals using a hybrid method in Dost-Bayli,Iran[J]. International Journal of Remote Sensing, 2016, 37(19/20):4923-4947.
doi: 10.1080/01431161.2016.1225176 url:
[12] 董新丰, 甘甫平, 李娜, 等. 高分五号高光谱影像矿物精细识别[J]. 遥感学报, 2020, 24(4):454-464.
[12] Dong X F, Gan F P, Li N, et al. Fine mineral identification of GF-5 hyperspectral image[J]. Journal of Remote Sensing, 2020, 24(4):454-464.
[13] 李娜, 董新丰, 甘甫平, 等. 高光谱遥感技术在基岩区区域地质调查填图中的应用[J]. 地质通报, 2021, 40(1):13-21.
[13] Li N, Dong X F, Gan F P, et al. Application of hyperspectral remote sensing technology in regional geological survey and mapping of bedrock area[J]. Geological Bulletin of China, 2021, 40(1):13-21.
[14] 张贵, 何绕生, 王波, 等. 云南华宁县盘溪大龙潭水文地质特征[J]. 贵州大学学报(自然科学版), 2020, 37(5):6.
[14] Zhang G, He R S, Wang B, et al. Hydrogeological characteristics of Panxi Dalongtan in Huaning County,Yunnan Province[J]. Journal of Guizhou University(Natural Science Edition), 2020, 37(5):6.
[15] 刘鹏, 王妍, 刘宗滨, 等. 云南省县域尺度的石漠化分布与区划[J]. 浙江农林大学学报, 2019, 36(5):965-973.
[15] Liu P, Wang Y, Liu Z B, et al. Distribution and regionalization of rocky desertification at county scale in Yunnan Province[J]. Journal of Zhejiang Agriculture and Forestry University, 2019, 36(5):965-973.
[16] Dobigeon N, Tourneret J, Chang C. Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery[J]. IEEE Transactions on Signal Processing, 2008, 56(7):2684-2695.
doi: 10.1109/TSP.2008.917851 url:
[17] Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002, 19(1):44-57.
doi: 10.1109/79.974727 url:
[18] 金鑫, 柯长青. 基于混合像元分解的天山典型地区冰雪变化监测[J]. 国土资源遥感, 2012, 24(4):146-151.doi:10.6046/gtzyyg.2012.04.24.
doi: 10.6046/gtzyyg.2012.04.24
[18] Jin X, Ke C Q. Monitoring of snow cover changes in Tianshan mountains based on mixed pixel decomposition[J]. Remote Sensing for Land and Resources, 2012, 24(4):146-151.doi:10.6046/gtzyyg.2012.04.24.
doi: 10.6046/gtzyyg.2012.04.24
[19] Nalawade D B, Solankar M M, Surase R R, et al. Hyperspectral remote sensing image analysis with SMACC and PPI algorithms for endmember extraction[J]. Communications in Computer and Information Science, 2019, 1035:319-328
[20] 王润生, 杨苏明, 闫柏琨. 成像光谱矿物识别方法与识别模型评述[J]. 国土资源遥感, 2007, 19(1):1-9.doi:10.6046/gtzyyg.2007.01.01.
doi: 10.6046/gtzyyg.2007.01.01
[20] Wang R S, Yang S M, Yan B K. A review of mineral spectral identification methods and models with imaging spectrometer[J]. Remote Sensing for Land and Resources, 2007, 19(1):1-9.doi:10.6046/gtzyyg.2007.01.01.
doi: 10.6046/gtzyyg.2007.01.01
[21] Rikmaru A. Landsat TM data processing guide for forest canopy density mapping and monitoring model[C]// ITTO Workshop on Utilization of Remote Sensing in Site Assessment and Planning for Rehabilitation of Logged-over Forest, 1996:1-8.
[22] 皮茂强, 潘祖高. 影响贵州石漠化形成和演化的地质因素[J]. 科海故事博览(科技探索), 2014(4):84-85.
[22] Pi M Q, Pan Z G. Geological factors affecting the formation and evolution of rocky desertification in Guizhou[J]. Broad Review of Scientific Stories (Scientific and Technological Exploration), 2014(4):84-85.
[1] ZHANG Shibo, HU Wenmin, HAN Zhenying, LI Guo, WANG Zhongcheng, GAO Zhihai. Differences in rocky desertification information extracted from GF-6 and Landsat8 using the pixel unmixing method: A case study of Puding County[J]. Remote Sensing for Natural Resources, 2023, 35(3): 274-283.
[2] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[3] DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34(3): 112-120.
[4] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[5] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[6] CAI Yaotong, LIU Shutong, LIN Hui, ZHANG Meng. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
[7] WANG Lingyu, CHEN Quan, WU Yue, ZHOU Zhongfa, DAN Yusheng. Accurate recognition and extraction of karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 23-31.
[8] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[9] Linlin WU, Yunlan GUAN, Jiawei LI, Chenxin YUAN, Rui LI. Assessment of Karst rocky desertification based on MODIS: Exemplified by Guizhou Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 235-242.
[10] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[11] Dazhao WANG, Simeng WANG, Chang HUANG. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land & Resources, 2019, 31(3): 157-165.
[12] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[13] Wenya LIU, Ruru DENG, Yeheng LIANG, Yi WU, Yongming LIU. Retrieval of chlorophyll-a concentration in Chaohu based on radiative transfer model[J]. Remote Sensing for Land & Resources, 2019, 31(2): 102-110.
[14] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[15] Jing LI, Qiangqiang SUN, Ping ZHANG, Danfeng SUN, Li WEN, Xianwen LI. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 220-228.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech