Please wait a minute...
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 107-115     DOI: 10.6046/zrzyyg.2022300
Factors influencing the terrain modeling accuracy of UAV photogrammetry based on Monte Carlo tests of control points
CHEN Kai1,2(), WANG Chun1,2,3(), DAI Wen1, SHENG Yehua4,5, LIU Aili1, TANG Guoan4,5
1. School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
2. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China
3. Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou 239000, China
4. School of Geography, Nanjing Normal University, Nanjing 210023, China
5. Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China
Download: PDF(7469 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Consumer-grade unmanned aerial vehicles (UAVs) each have a single camera and high lens distortion. The accuracy of terrain modeling using UAVs is influenced by route design and control surveys. By designing different data collection schemes and Monte Carlo tests, this study investigated the influence of the camera’s tilt angle, flight height, and the number of ground control points (GCPs) on terrain modeling accuracy in three small river basins on the Loess Plateau. The results are as follows: ① Before the processing of UAV photogrammetry data, it is necessary to analyze the quality of GCPs through Monte Carlo tests to eliminate GCP errors. ② The effects of the tilt angles of cameras include: in the case of no available GCPs, tilt photogrammetry with tilt angles of cameras can both improve the overall accuracy of the sampling area and optimize the spatial distribution of errors, with these advantages related to the optimization of the camera distortion model; in the case of available GCPs, the camera tilt angle has minor influence on elevation accuracy but affects the saturation number of GCPs. Compared with vertical photogrammetry, tilt photogrammetry requires slightly more GCPs to achieve the optimal accuracy. ③ The effects of the flight height include: in the case of no available GCPs, tilt photogrammetry can reduce the sensitivity of elevation accuracy to flight height; in the case of available GCPs, flight heights of 60~160 m have no significant influence on elevation accuracy, and the change in flight height does not affect the saturation number of GCPs.

Keywords UAV photogrammetry      terrain modeling      tilt photogrammetry      Monte Carlo test      route design      number of ground control points     
ZTFLH:  TP79  
Issue Date: 19 September 2023
E-mail this article
E-mail Alert
Articles by authors
Aili LIU
Guoan TANG
Cite this article:   
Kai CHEN,Chun WANG,Wen DAI, et al. Factors influencing the terrain modeling accuracy of UAV photogrammetry based on Monte Carlo tests of control points[J]. Remote Sensing for Natural Resources, 2023, 35(3): 107-115.
URL:     OR
Fig.1  Flight design and distribution of control points in the study area
Fig.2  Flowchart of UAV photogrammetry technology
样区 相机倾角/(°) 航高/m 飞行
T1 0, 5, 10, 20, 30, 40, 50 100 7 2.7
T2 0, 5, 10, 20, 30, 40, 50 70 7 1.9
T3 0, 10, 20, 30, 40 80 5 2.2
Tab.1  Camera angle experiment of UAV photogrammetry
样区 航高/m 相机倾
T1 60, 80, 100, 120, 140, 160 0 7 1.6 ~ 4.4
T2 60, 80, 100, 120, 140, 160 15 6 1.6 ~ 4.4
Tab.2  UAV photogrammetry altitude experiment
Fig.3  Quality analysis of control points
Fig.4  Effect of camera inclination on RMSEZ
样区 相机倾角/(°)
0 10 30 40
Tab.3  Spatial distribution of check point error under different camera inclination
Tab.4  Autocorrelation model of camera parameters under different camera inclination
倾角/(°) T1样区 T2样区 T3样区
Tab.5  Monte Carlo test results of control points under different camera inclination in T1,T2,T3 sample area
Fig.5  Effect of altitude on RMSEZ
Fig.6  Monte Carlo test results of control points at different altitudes
[1] James M R, Robson S, Smith M W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry:Precision maps for ground control and directly georeferenced surveys[J]. Earth Surface Processes and Landforms, 2017, 42(12):1769-1788.
doi: 10.1002/esp.v42.12 url:
[2] 杨胜天, 王鹏飞, 王娟, 等. 结合无人机航空摄影测量的河道流量估算[J]. 遥感学报, 2021, 25(6):1284-1293.
[2] Yang S T, Wang P F, Wang J, et al. River flow estimation method based on UAV aerial photogrammetry[J]. National Remote Sensing Bulletin, 2021, 25(6): 1284-1293.
doi: 10.11834/jrs.20209082 url:
[3] 代文, 汤国安, 胡光辉, 等. 基于无人机摄影测量的地形变化检测方法与小流域输沙模型研究[J]. 地理科学进展, 2021, 40(9):1570-1580.
doi: 10.18306/dlkxjz.2021.09.011
[3] Dai W, Tang G A, Hu G H, et al. Modelling sediment transport in space in a watershed based on topographic change detection by UAV survey[J]. Progress in Geography, 2021, 40(9):1570-1580.
doi: 10.18306/dlkxjz.2021.09.011
[4] 刘树超, 邵全琴, 杨帆, 等. 黄河源区放牧家畜数量及空间分布无人机遥感调查[J]. 地球信息科学学报, 2021, 23(7):1286-1295.
doi: 10.12082/dqxxkx.2021.210075
[4] Liu S C, Shao Q Q, Yang F, et al. Using UAVs remote sensing for population and distribution of grazing livestock in the source region of the Yellow River[J]. Journal of Geo-Information Science, 2021, 23(7): 1286-1295.
[5] James M R, Chandler J H, Eltner A, et al. Guidelines on the use of structure-from-motion photogrammetry in geomorphic research[J]. Earth Surface Processes and Landforms, 2019, 44(10):2081-2084.
doi: 10.1002/esp.4637
[6] 刘见礼, 廖小罕, 倪文俭, 等. 顾及单木三维形态的无人机立体影像单木识别算法[J]. 地球信息科学学报, 2021, 23(10):1861-1872.
doi: 10.12082/dqxxkx.2021.210117
[6] Liu J L, Liao X H, Ni W J, et al. Individual tree recognition algorithm of UAV stereo imagery considering three-dimensional morphology of tree[J]. Journal of Geo-Information Science, 2021, 23(10): 1861-1872.
[7] Agüera-Vega F, Carvajal-Ramírez F, Martínez-Carricondo P, et al. Reconstruction of extreme topography from UAV structure from motion photogrammetry[J]. Measurement, 2018, 121: 127-138.
doi: 10.1016/j.measurement.2018.02.062 url:
[8] James M R, Robson S. Straightforward reconstruction of 3D surfaces and topography with a camera:Accuracy and geoscience application[J]. Journal of Geophysical Research(Earth Surface), 2012, 117(f3):3-17.
[9] 张祖勋, 张剑清. 数字摄影测量学(第2版)[M]. 武汉: 武汉大学出版社, 2012.
[9] Zhang Z X, Zhang J Q. Digiital photogrammetry(second edition)[M]. Wuhan: Wuhan University Press, 2012.
[10] Nesbit P, Hugenholtz C. Enhancing UAV-SfM 3D model accuracy in high-relief landscapes by incorporating oblique images[J]. Remote Sensing, 2019, 11(3):239.
doi: 10.3390/rs11030239 url:
[11] Bemis S P, Micklethwaite S, Turner D, et al. Ground-based and UAV-based photogrammetry:A multi-scale,high-resolution mapping tool for structural geology and paleoseismology[J]. Journal of Structural Geology, 2014, 69: 163-178.
doi: 10.1016/j.jsg.2014.10.007 url:
[12] James M R, Robson S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks[J]. Earth Surface Processes and Landforms, 2014, 39(10):1413-1420.
doi: 10.1002/esp.v39.10 url:
[13] Carbonneau P E, Dietrich J T. Cost-effective non-metric photogrammetry from consumer-grade sUAS:Implications for direct georeferencing of structure from motion photogrammetry[J]. Earth Surface Processes and Landforms, 2017, 42(3):473-486.
doi: 10.1002/esp.v42.3 url:
[14] Carvajal-Ramírez F, Agüera-Vega F, Martínez-Carricondo P J. Effects of image orientation and ground control points distribution on unmanned aerial vehicle photogrammetry projects on a road cut slope[J]. Journal of Applied Remote Sensing, 2016, 10(3):034004.
doi: 10.1117/1.JRS.10.034004 url:
[15] Rossi P, Mancini F, Dubbini M, et al. Combining nadir and oblique UAV imagery to reconstruct quarry topography:Methodology and feasibility analysis[J]. European Journal of Remote Sensing, 2017, 50(1):211-221.
doi: 10.1080/22797254.2017.1313097 url:
[16] Smith M W, Vericat D. From experimental plots to experimental landscapes:Topography,erosion and deposition in sub-humid badlands from structure-from-motion photogrammetry[J]. Earth Surface Processes and Landforms, 2015, 40(12):1656-1671.
doi: 10.1002/esp.v40.12 url:
[17] 张纯斌, 杨胜天, 赵长森, 等. 小型消费级无人机地形数据精度验证[J]. 遥感学报, 2018, 22(1):185-195.
[17] Zhang C B, Yang S T, Zhao C S, et al. Topographic data accuracy verification of small consumer UAV[J]. Journal of Remote Sensing, 2018, 22(1):185-195.
[18] Cabo C, Sanz-Ablanedo E, Roca-Pardinas J, et al. Influence of the number and spatial distribution of ground control points in the accuracy of UAV-SfM DEMs:An approach based on generalized additive models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12):10618-10627.
doi: 10.1109/TGRS.2021.3050693 url:
[19] 桑文刚, 李娜, 韩峰, 等. 小区域消费级无人机倾斜摄影像控点布设及建模精度研究[J]. 测绘通报, 2019(10):93-96.
doi: 10.13474/j.cnki.11-2246.2019.0325
[19] Sang W G, Li N, Han F, et al. Research on the control point layout scheme for consumption-grade UAV oblique photogrammetry in small areas and modeling accuracy[J]. Bulletin of Surveying and Mapping, 2019(10):93-96.
doi: 10.13474/j.cnki.11-2246.2019.0325
[20] James M R, Robson S, D’oleire-Oltmanns S, et al. Optimising UAV topographic surveys processed with structure-from-motion:Ground control quality,quantity and bundle adjustment[J]. Geomorphology, 2017, 280: 51-66.
doi: 10.1016/j.geomorph.2016.11.021 url:
[21] 国家测绘局. 低空数字航空摄影规范[M]. 北京: 中国测绘出版社, 2010: 15-16.
[21] State Bureau of Surveying and Mapping. Specification for low altitude digital aerial photography[M]. Beijing: Surveying and Mapping Press, 2010: 15-16.
[22] Antoniazza G, Bakker M, Lane S N. Revisiting the morphological method in two dimensions to quantify bed-material transport in braided rivers[J]. Earth Surface Processes and Landforms, 2019, 44(11):2251-2267.
doi: 10.1002/esp.4633
[23] 武汉大学测绘学院测量平差学科组. 误差理论与测量平差基础[M]. 武汉: 武汉大学出版社, 2014.
[23] Surveying adjustment discipline group, School of Surveying and Mapping, Wuhan University. Error theory and basis of measurement adjustment[M]. Wuhan: Wuhan University Press, 2014.
[1] WANG Jue, GUO Zhen, ZHANG Zhiwei, XU Wenxue, XU Hao. Construction of 3D landscape indices based on tilt photogrammetry: A case study of Tianheng Island in Shandong Province[J]. Remote Sensing for Natural Resources, 2023, 35(2): 112-121.
[2] LI Jiajun, ZHONG Ruofei. Route design of light airborne LiDAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 97-103.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech