Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 1-8     DOI: 10.6046/zrzyyg.2022338
|
A review of the estimation methods for daily mean temperatures using remote sensing data
WANG Yan1(), WANG Licheng1, WU Jinwen2,3()
1. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2. Institute of Atmospheric Environment, CMA, Shenyang 110166, China
3. Key Laboratory of Agrometeorological Disasters, Shenyang 110166, China
Download: PDF(864 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Daily mean temperatures, as a primary indicator reflecting climatic characteristics, play a decisive role in monitoring urban heat island effects and agroecological environments. However, daily mean temperatures measured at meteorological stations lack spatial representativeness in regional-scale models. By contrast, the inversion results of daily mean temperatures using remote sensing data can better accommodate the large-scale monitoring needs, but with insufficient accuracy and quality. This study presented several common estimation methods for daily mean temperatures using remote sensing data, including multiple linear regression, machine learning, and feature space-based extrapolation. Then, based on the principle and process for estimation of daily mean temperatures using remote sensing data, this study systematically analyzed the effects of uncertainties such as clouds and aerosols and offered corresponding solutions. Finally, this study predicted the development trend of such estimation methods. Additionally, this study posited that image fusion and multi-source data fusion at different transit times can significantly improve the estimation accuracy under cloud interference.

Keywords daily mean temperature      inversion of remote sensing data      estimation method      cloud interference     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan WANG
Licheng WANG
Jinwen WU
Cite this article:   
Yan WANG,Licheng WANG,Jinwen WU. A review of the estimation methods for daily mean temperatures using remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(4): 1-8.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022338     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/1
模型类型 算法类型 适用范围 文献来源
多元线性回归法 全子集回归方法 适合平原地区的日平均气温的估算,山区估算误差较大 姚永慧等[21];
Colombi等[22];
Zhang等[23];
Benali等[24];
Yang等[25];
Golkar等[26]
标准化回归系数方法
机器学习方法 随机森林 适用于山区,地形起伏大,复杂的地区日平均气温估算 Agathangelidis等[27]; Li等[28]; Moser等[29];
Zhang等[30]; Ho等[31]
支持向量机
神经网络
特征空间外推法 NDVI-LST梯形空间外推法 适用于中、高植被覆盖区域的日平均气温的估算 Sun等[32]; Zhu等[33];侯英雨等[34]
NDVI-LST三角形特征空间外推法
Tab.1  List of methods for estimating daily mean temperature by remote sensing
Fig.1  Schematic diagram of NDVI-Ts characteristic space[41]
特征空间模型 模型算法 算法精度 文献来源
TVX T s = a t , i + b t , i N D V I T t , i = a t , i + b t , i N D V I m a x T a , t = T m i n + ( T m a x - T m i n ) s i n [ π ( t + t d l 2 - 12 ) / ( t d l + 2 t T m a x ) ] RMSE为3.43 ℃
MAE为2.54 ℃
Zhu等[33]
NDVI-LST空间三角形和梯形 T L S T N D V I i , m a x = b 1 + c 1 + N D V I i T L S T N D V I i , m i n = b 2 + c 2 + N D V I i T a = T L S T N D V I i - T L S T N D V I i , m i n T L S T N D V I i , m a x - T L S T N D V I i , m i n ( T a , m a x - T a , m i n ) 稀疏植被覆盖区
MAE为1.5~1.8 ℃
中高植被覆盖区MAE为1.61 ℃
侯英雨等[34]
EVI-LST空间三角形和梯形 T a m e a n = 1 - E V I c 1 - E V I ( T s d a y - T s n i g h t ) + T s n i g h t 平原区RMSE为1.84 K
山区RMSE为2.34 K
高山区RMSE为2.45 K
Sun等[44]
Tab.2  List of methods for air temperature estimation extrapolated from characteristic space
[1] Karnieli A, Agam N, Pinker R T, et al. Use of NDVI and land surface temperature for drought assessment:Merits and limitations[J]. Journal of Climate, 2010, 23(3):618-633.
doi: 10.1175/2009JCLI2900.1 url: http://journals.ametsoc.org/doi/10.1175/2009JCLI2900.1
[2] Zhang Y, Feng R, Ji R, et al. Application of remote sensing technology in crop chilling injury monitoring[C]// 2010 Fourth International Conference on Genetic and Evolutionary Computing.IEEE, 2010:375-378.
[3] 裴亮, 王和斌, 延昊. 利用MODIS数据反演气温监测夏季高温热害[J]. 安徽农业科学, 2012, 40(8):4777-4779,4817.
[3] Pei L, Wang H B, Yan H. Monitoring of summer high temperature by using MODIS data to estimate air temperature[J]. Journal of Anhui Agricultural Sciences, 2012, 40(8):4777-4779,4817.
[4] Zhang J, Yao F, Li B, et al. Progress in monitoring high-temperature damage to rice through satellite and ground-based optical remote sensing[J]. Science China Earth Sciences, 2011, 54(12):1801-1811.
doi: 10.1007/s11430-011-4210-5 url: http://link.springer.com/10.1007/s11430-011-4210-5
[5] Green R M, Hay S I. The potential of pathfinder AVHRR data for providing surrogate climatic variables across Africa and Europe for epidemiological applications[J]. Remote Sensing of Environment, 2002, 79(2/3):166-175.
doi: 10.1016/S0034-4257(01)00270-X url: https://linkinghub.elsevier.com/retrieve/pii/S003442570100270X
[6] Kloog I, Chudnovsky A, Koutrakis P, et al. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts,USA[J]. Science of the Total Environment, 2012, 432:85-92.
doi: 10.1016/j.scitotenv.2012.05.095 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969712008108
[7] 李海楠, 朱丽杰, 李明倩, 等. 东北地区大豆冷害指标构建及变化特征[J]. 应用气象学报, 2021, 32(4):491-503.
[7] Li H N, Zhu L J, Li M Q, et al. Construction of soybean chilling damage indicator and its evolution characteristics in Northeast China[J]. Journal of Applied Meteorological Science, 2021, 32(4):491-503.
[8] 王培娟, 霍治国, 陈鹏狮. 东北地区春玉米不同发育阶段热量指数时空特征[J]. 生态学杂志, 2018, 37(5):1450-1458.
[8] Wang P J, Huo Z G, Chen P S. Spatiotemporal dynamics of heat index for spring maize at different developmental stages in Northeast China[J]. Chinese Journal of Ecology, 2018, 37(5):1450-1458.
[9] Zhu W, Lyu A, Jia S, et al. Development and evaluation of the MTVDI for soil moisture monitoring[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(11):5533-5555.
doi: 10.1002/jgrd.v122.11 url: https://agupubs.onlinelibrary.wiley.com/toc/21698996/122/11
[10] Cristóbal J, Ninyerola M, Pons X. Modeling air temperature through a combination of remote sensing and GIS data[J]. Journal of Geophysical Research:Atmospheres, 2008, 133:D13106.
[11] 曹娟, 张朝, 张亮亮, 等. 基于Google Earth Engine和作物模型快速评估低温冷害对大豆生产的影响[J]. 地理学报, 2020, 75(9):1879-1892.
doi: 10.11821/dlxb202009005
[11] Cao J, Zhang Z, Zhang L L, et al. Damage evaluation on soybean chilling injury based on Google Earth Engine(GEE) and crop growth model[J]. Acta Geographica Sinica, 2020, 75(9):1879-1892.
[12] 叶芝菡, 谢云, 刘宝元. 日平均气温的两种计算方法比较[J]. 北京师范大学学报(自然科学版), 2002, 38(3):421-426.
[12] Ye Z H, Xie Y, Liu B Y. A comparison of mean daily temperature calculated by two methods[J]. Journal of Beijing Normal University (Natural Science), 2002, 38(3):421-426.
[13] 钱永兰, 吕厚荃, 张艳红. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J]. 气象与环境学报, 2010, 26(2):7-15.
[13] Qian Y L, Lyu H Q, Zhang Y H. Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPLIN software[J]. Journal of Meteorology and Environment, 2010, 26(2):7-15.
[14] Neteler M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010, 2(1):333-351.
doi: 10.3390/rs1020333 url: http://www.mdpi.com/2072-4292/2/1/333
[15] Duan S B, Li Z L, Zhao W, et al. Validation of Landsat land surface temperature product in the conterminous United States using in situ measurements from SURFRAD,ARM,and NDBC sites[J]. International Journal of Digital Earth, 2021, 14(5):640-660.
doi: 10.1080/17538947.2020.1862319 url: https://www.tandfonline.com/doi/full/10.1080/17538947.2020.1862319
[16] 刘晓菲, 张朝, 帅嘉冰, 等. 黑龙江省冷害对水稻产量的影响[J]. 地理学报, 2012, 67(9):1223-1232.
[16] Liu X F, Zhang Z, Shuai J B, et al. Effect of chilling injury on rice yield in Heilongjiang Province[J]. Acta Geographica Sinica, 2012, 67(9):1223-1232.
doi: 10.11821/xb201209007
[17] 胡列群, 武鹏飞, 李新建, 等. 基于ETM+影像的棉花低温冷害遥感监测方法研究[J]. 中国农学通报, 2011, 27(4):459-463.
[17] Hu L Q, Wu P F, Li X J, et al. The remote sensing monitoring method analysis of cold damage cotton based on ETM+ images[J]. Chinese Agricultural Science Bulletin, 2011, 27(4):459-463.
doi: 10.11924/j.issn.1000-6850.2010-2799
[18] 覃志豪, Zhang M H, Arnon Karnieli. 用NOAA-AVHRR热通道数据演算地表温度的劈窗算法[J]. 国土资源遥感, 2001, 13(2):33-42.doi:10.6046/gtzyyg.2001.02.07.
[18] Qin Z H, Zhang M H, Karnieli A. Split window algorithms for retrieving land surface temperature from NOAA-AVHRR data[J]. Remote Sensing for Land and Resources, 2001, 13(2):33-42.doi:10.6046/gtzyyg.2001.02.07.
[19] Wan Z, Zhang Y, Zhang Q, et al. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data[J]. Remote Sensing of Environment, 2002, 83(1/2):163-180.
doi: 10.1016/S0034-4257(02)00093-7 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702000937
[20] 程元良, 吴骅, 李召良, 等. FY-3D MERSI-Ⅱ地表温度遥感反演与验证[J]. 遥感学报, 2021, 25(8):1792-1807.
[20] Cheng Y L, Wu H, Li Z L, et al. Retrieval and validation of the land surface temperature from FY-3D MERSI-Ⅱ[J]. National Remote Sensing Bulletin, 2021, 25(8):1792-1807.
doi: 10.11834/jrs.20211302 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20211302/
[21] 姚永慧, 张百平, 韩芳. 基于Modis地表温度的横断山区气温估算及其时空规律分析[J]. 地理学报, 2011, 66(7):917-927.
[21] Yao Y H, Zhang B P, Han F. MODIS-based air temperature estimation in the Hengduan Mountains and its spatio-temporal analysis[J]. Acta Geographica Sinica, 2011, 66(7):917-927.
doi: 10.11821/xb201107005
[22] Colombi A, Michele C, Pepe M, et al. Estimation of daily mean air temperature from modis lst in alpine areas[C]// European Association of Remote Sensing Laboratories Symposium, 2007.
[23] Zhang W, Huang Y, Yu Y, et al. Empirical models for estimating daily maximum,minimum and mean air temperatures with MODIS land surface temperatures[J]. International Journal of Remote Sensing, 2011, 32(24):9415-9440.
doi: 10.1080/01431161.2011.560622 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2011.560622
[24] Benali A, Carvalho A C, Nunes J P, et al. Estimating air surface temperature in Portugal using MODIS LST data[J]. Remote Sensing of Environment, 2012, 124:108-121.
doi: 10.1016/j.rse.2012.04.024 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712002003
[25] Yang Y, Cai W, Yang J. Evaluation of MODIS land surface temperature data to estimate near-surface air temperature in Northeast China[J]. Remote Sensing, 2017, 9(5):410.
doi: 10.3390/rs9050410 url: http://www.mdpi.com/2072-4292/9/5/410
[26] Golkar F, Sabziparvar A A, Khanbilvardi R, et al. Estimation of instantaneous air temperature using remote sensing data[J]. International Journal of Remote Sensing, 2018, 39(1):258-275.
doi: 10.1080/01431161.2017.1382743 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2017.1382743
[27] Agathangelidis I, Cartalis C, Santamouris M. Estimation of air temperatures for the urban agglomeration of Athens with the use of satellite data[J]. Geoinformatics and Geostatistics:An Overview, 2016, 4(2):25-32.
[28] Li M, Im J, Beier C. Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest[J]. GIScience and Remote Sensing, 2013, 50(4):361-384.
doi: 10.1080/15481603.2013.819161 url: https://www.tandfonline.com/doi/full/10.1080/15481603.2013.819161
[29] Moser G, De Martino M, Serpico S B. Estimation of air surface temperature from remote sensing images and pixelwise modeling of the estimation uncertainty through support vector machines[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):332-349.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[30] Zhang H, Zhang F, Ye M, et al. Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(19):11425-11441.
[31] Ho H C, Knudby A, Sirovyak P, et al. Mapping maximum urban air temperature on hot summer days[J]. Remote Sensing of Environment, 2014, 154:38-45.
doi: 10.1016/j.rse.2014.08.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714003095
[32] Sun H, Chen Y, Gong A, et al. Estimating mean air temperature using MODIS day and night land surface temperatures[J]. Theoretical and Applied Climatology, 2014, 118(1):81-92.
doi: 10.1007/s00704-013-1033-7 url: http://link.springer.com/10.1007/s00704-013-1033-7
[33] Zhu W, Jia S, Lyu A. A time domain solution of the modified temperature vegetation dryness index (MTVDI) for continuous soil moisture monitoring[J]. Remote Sensing of Environment, 2017, 200:1-17.
doi: 10.1016/j.rse.2017.07.032 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425717303474
[34] 侯英雨, 张佳华, 延昊, 等. 利用卫星遥感资料估算区域尺度空气温度[J]. 气象, 2010, 36(4):75-79.
[34] Hou Y Y, Zhang J H, Yan H, et al. Air temperature retrieval from remote sensing data at regional level[J]. Meteorological Monthly, 2010, 36(4):75-79.
[35] 张丽文, 黄敬峰, 王秀珍. 气温遥感估算方法研究综述[J]. 自然资源学报, 2014, 29(3):540-552.
doi: 10.11849/zrzyxb.2014.03.017
[35] Zhang L W, Huang J F, Wang X Z. A review on air temperature estimation by satellite thermal infrared remote sensing[J]. Journal of Natural Resources, 2014, 29(3):540-552.
[36] Vancutsem C, Ceccato P, Dinku T, et al. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa[J]. Remote Sensing of Environment, 2010, 114(2):449-465.
doi: 10.1016/j.rse.2009.10.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709003113
[37] Janatian N, Sadeghi M, Sanaeinejad S H, et al. A statistical framework for estimating air temperature using MODIS land surface temperature data[J]. International Journal of Climatology, 2017, 37(3):1181-1194.
doi: 10.1002/joc.2017.37.issue-3 url: https://rmets.onlinelibrary.wiley.com/toc/10970088/37/3
[38] 祝善友, 张桂欣, 尹球, 等. 基于多源极轨气象卫星热红外数据的近地表气温反演研究[J]. 遥感技术与应用, 2009, 24(1):27-31.
[38] Zhu S Y, Zhang G X, Yin Q, et al. The study on the retrieval of the air temperature based on multi-sources polar orbit meteorological satellite data[J]. Remote Sensing Technology and Application, 2009, 24(1):27-31.
[39] Xu Y, Knudby A, Ho H C. Estimating daily maximum air temperature from MODIS in British Columbia,Canada[J]. International Journal of Remote Sensing, 2014, 35(24):8108-8121.
doi: 10.1080/01431161.2014.978957 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2014.978957
[40] 邢立亭, 李净, 焦文慧. 基于MODIS和随机森林的兰州市日最高气温和最低气温估算[J]. 干旱区研究, 2020, 37(3):689-695.
[40] Xing L T, Li J, Jiao W H. Estimation of daily maximum and minimum temperature of Lanzhou City based on MODIS and random forest[J]. Arid Zone Research, 2020, 37(3):689-695.
[41] Prince S D, Goetz S J, Dubayah R O, et al. Inference of surface and air temperature,atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations:Comparison with field observations[J]. Journal of Hydrology, 1998, 212/213:230-249.
doi: 10.1016/S0022-1694(98)00210-8 url: https://linkinghub.elsevier.com/retrieve/pii/S0022169498002108
[42] Zhu W, Lyu A, Jia S. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products[J]. Remote Sensing of Environment, 2013, 130:62-73.
doi: 10.1016/j.rse.2012.10.034 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712004221
[43] Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data[J]. Journal of Applied Meteorology, 1989, 28(4):276-284.
doi: 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2 url: http://journals.ametsoc.org/doi/10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
[44] Sun L, Sun R, Li X, et al. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information[J]. Agricultural and Forest Meteorology, 2012, 166/167:175-187.
doi: 10.1016/j.agrformet.2012.07.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0168192312002493
[45] Bisht G, Bras R L. Estimation of net radiation from the MODIS data under all sky conditions:Southern Great Plains case study[J]. Remote Sensing of Environment, 2010, 114(7):1522-1534.
doi: 10.1016/j.rse.2010.02.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425710000660
[46] Zhu W, Lyu A, Jia S, et al. Retrievals of all-weather daytime air temperature from MODIS products[J]. Remote Sensing of Environment, 2017, 189:152-163.
doi: 10.1016/j.rse.2016.11.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716304503
[47] Song C, Jia L, Menenti M. Retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature using MODIS LST and NDVI data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3):935-942.
doi: 10.1109/JSTARS.2013.2272053 url: http://ieeexplore.ieee.org/document/6575196/
[48] Zhou F C, Li Z L, Wu H, et al. Retrieving K-band instantaneous microwave land surface emissivity based on passive microwave brightness temperature and atmospheric precipitable water vapor data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12):5608-5617.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[49] Zhang X, Zhou J, Liang S, et al. Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:321-344.
doi: 10.1016/j.isprsjprs.2020.07.014 url: https://linkinghub.elsevier.com/retrieve/pii/S092427162030201X
[50] Yu X, Guo X, Wu Z. Land surface temperature retrieval from Landsat8 TIRS:Comparison between radiative transfer equation-based method,split window algorithm and single channel method[J]. Remote Sensing, 2014, 6(10):9829-9852.
doi: 10.3390/rs6109829 url: http://www.mdpi.com/2072-4292/6/10/9829
[51] 宋挺, 段峥, 刘军志, 等. Landsat8数据地表温度反演算法对比[J]. 遥感学报, 2015, 19(3):451-464.
[51] Song T, Duan Z, Liu J Z, et al. Comparison of four algorithms to retrieve land surface temperature using Landsat8 satellite[J]. Journal of Remote Sensing, 2015, 19(3):451-464.
[52] 刘超, 历华, 杜永明, 等. Himawari8 AHI数据地表温度反演的实用劈窗算法[J]. 遥感学报, 2017, 21(5):702-714.
[52] Liu C, Li H, Du Y M, et al. Practical split-window algorithm for retrieving land surface temperature from Himawari8 AHI data[J]. Journal of Remote Sensing, 2017, 21(5):702-714.
[53] 刘元亮. 高分辨率气溶胶光学厚度反演及其与地表特征和热环境的相关关系研究[D]. 南京: 南京大学, 2016.
[53] Liu Y L. Study on high resolution retrieval of aerosol optical depth and its correlation with land surface features and thermal environment[D]. Nanjing: Nanjing University, 2016.
[54] Sharma A, Bhattacharya A, Venkataraman C. Influence of aerosol radiative effects on surface temperature and snow melt in the Himalayan region[J]. The Science of the Total Environment, 2022, 810:151299.
doi: 10.1016/j.scitotenv.2021.151299 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969721063774
[55] Stofferahn E, Boybeyi Z. Investigation of aerosol effects on the Arctic surface temperature during the diurnal cycle:Part 2-Separating aerosol effects[J]. International Journal of Climatology, 2017, 37(s1):775-787.
doi: 10.1002/joc.2017.37.issue-S1 url: https://rmets.onlinelibrary.wiley.com/toc/10970088/37/S1
[56] Zhang R, Rong Y, Tian J, et al. A remote sensing method for estimating surface air temperature and surface vapor pressure on a regional scale[J]. Remote Sensing, 2015, 7(5):6005-6025.
doi: 10.3390/rs70506005 url: http://www.mdpi.com/2072-4292/7/5/6005
[1] Qiuzhi PENG, Guoling QIN, Leting LYU, Yaling WU. Spatio-temporal patterns of cloud interference in Dongjiang River basin from MODIS data[J]. Remote Sensing for Land & Resources, 2018, 30(1): 109-115.
[2] HU Yingjin, CUI Haiming. Progress in the study of crop yield estimation methods based on remote sensing and geographic information system[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech