Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 23-30     DOI: 10.6046/zrzyyg.2023167
|
Evaluation and analysis of geological environment of mines in the Ili Valley and countermeasures for ecological restoration and management
ZHAO Yuling1(), YANG Jinzhong1, SUN Weidong2, YU Hao2, XING Yu1, CHEN Dong1, MA Xinying1, WANG Tixin1, WANG Cong1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Information Center of Bureau of Geology and Mineral Resources of Xinjiang, Urumqi 830000, China
Download: PDF(2667 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to evaluate and analyze the geology of mines in Ili Valley and investigate the countermeasures for ecological restoration therein. Utilizing the mining development status derived from remote sensing data and the remote sensing survey results of geological environment, as well as multi-source geological, socio-economic, and meteorological data, this study built a hierarchy structural model using analytic hierarchy process (AHP) and assessed the geological environment of mines in the Ili Valley, The results indicate that the severely affected areas are relatively concentrated, accounting for 4.61% of the total area of Ili Valley. The moderately severely affected areas present a continuous distribution. These areas overlap with each other, exhibiting indistinct boundaries. The generally affected areas are primarily distributed in extremely high mountain areas, medium to high mountain areas, and low mountain and hilly areas. The unaffected areas are primarily distributed in the alluvial plain area in the central part Ili River Valley and the plain area of the Zhaosu Basin. The areas with high ecological carrying capacity are mainly concentrated in the central region except for the south of Zhaosu County and Tekes County, the eastern edge of Nilka County, and the northern area of Khorgos. This study proposed corresponding ecological restoration and management measures and countermeasures against major geological issues. The findings of this study can provide basic data and technical support for the sustainable development of the ecology and the rational exploitation of mine resources in the Ili Valley. Additionally, these findings can serve as a case study for monitoring and assessing the geology of mines in arid and semi-arid areas.

Keywords Ili Valley      remote sensing survey and monitoring      analytic hierarchy process (AHP)      geology of mines      ecological restoration and management     
ZTFLH:  TP79  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuling ZHAO
Jinzhong YANG
Weidong SUN
Hao YU
Yu XING
Dong CHEN
Xinying MA
Tixin WANG
Cong WANG
Cite this article:   
Yuling ZHAO,Jinzhong YANG,Weidong SUN, et al. Evaluation and analysis of geological environment of mines in the Ili Valley and countermeasures for ecological restoration and management[J]. Remote Sensing for Natural Resources, 2024, 36(4): 23-30.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023167     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/23
Fig.1  Field photos of Earth’s surface subsidence
Fig.2  Field photos of increased desertification caused by sand mining for construction
Fig.3  Evaluation structure of mine geo-environment in Ili Valley
自然
地理
地形
地貌
降雨量 植被
覆盖度
区域重
要程度
ωi
地形地貌 1.00 4 0.500 0 2 0.315 1
降雨量 0.25 1 0.333 3 1 0.118 2
植被覆盖度 2.00 3 1.000 0 2 0.412 7
区域重要程度 0.50 1 0.500 0 1 0.153 9
Tab.1  Weights of standard layer matrix of C1-P
准则层 自然地理C1 基础地质C2 资源损毁C3 地质环境C4
权重 0.043 0 0.283 9 0.551 8 0.121 3
Tab.2  Weights of standard layer (A-C)
评价因子 地形地貌 降雨量 植被覆盖度 区域重要程度 构造 岩性组合 边坡结构 开采矿山密度
权重 0.013 6 0.005 1 0.017 8 0.006 6 0.333 3 0.174 4 0.076 2 0.057 2
评价因子 开采强度 开采方式 主采矿种 占用土地比例 地质灾害 地灾隐患 污染 生态环境恢复治理
权重 0.190 8 0.208 6 0.038 5 0.056 7 0.073 3 0.006 1 0.024 8 0.017 2
Tab.3  Weights of indicator layer
Fig.4  Geo-environment assessment result of mines in Ili Valley in 2021
分区级别 面积/km2 占区域土地面积百分比/%
严重影响区 2 514.65 4.61
较严重影响区 18 143.14 33.24
一般严重区 15 874.99 29.08
无影响区 18 051.66 33.07
Tab.4  Statistics of area of mine environmental zoning in Ili Valley
[1] 中华人民共和国国土资源部. DZ/T 0266—2014标准矿产资源开发遥感监测技术规范[S]. 北京: 中国标准出版社, 2014.
[1] Ministry of Land and Resources. DZ/T 0266—2014 Regulation on remote sensing monitoring of mining exploration[S]. Beijing: Standards Press of China, 2014.
[2] 自然资源部. DZ/T 0392—2022 中华人民共和国地质矿产行业标准矿山环境遥感监测技术规范[S]. 北京: 自然资源部, 2022.
[2] Ministry of Natural Resources. DZ/T 0392-2022 Technical specification for mine environment remote sensing monitoring[S]. Beijing: Ministry of Natural Resources, 2022.
[3] 赵玉灵. 基于层次分析法的矿山环境评价方法研究——以海南岛为例[J]. 国土资源遥感, 2020, 32(1):148-153.doi: 10.6046/gtzyyg.2020.01.20.
[3] Zhao Y L. Study and application of analytic hierarchy process of mine geological environment:A case study in Hainan Island[J]. Remote Sensing for Land and Resource, 2020, 32(1):148-153.doi:10.6046/gtzyyg.2020.01.20.
[4] 赵玉灵, 杨金中, 邢宇, 等. 伊犁谷地矿山生态修复适宜性遥感调查与评估成果报告[R]. 北京: 中国自然资源航空物探遥感中心, 2023.
[4] Zhao Y L, Yang J Z, Xing Y, et al. Report on remote sensing investigation and evaluation of the suitability for ecological restoration of mines in the Ili Valley[R]. Beijing: China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, 2023.
[5] 俞帅一, 弓小平, 齐锐. 伊犁谷矿山地质环境质量评价分析[J]. 世界有色金属, 2018(9):218-219.
[5] Yu S Y, Gong X P, Qi R. Analysis of geological environment quality evaluation in Ili Valley[J]. World Nonferrous Metals, 2018(9):218-219.
[6] 徐俏, 徐海量, 夏国柱, 等. 新疆矿山生态修复的认识及思考[J]. 新疆师范大学学报(自然科学版), 2022, 41(3):29-34.
[6] Xu Q, Xu H L, Xia G Z, et al. Cognition and consideration on ecological restoration of mines in Xinjiang[J]. Journal of Xinjiang Normal University(Natural Sciences Edition), 2022, 41(3): 29-34.
[7] 余中元, 帕拉提·阿不都卡迪尔, 吴现兴, 等. 新疆矿山环境地质问题及其治理对策[J]. 自然灾害学报, 2007, 16(4):66-69.
[7] Yu Z Y, Parati A, Wu X X, et al. Environmental geology hazard of mine in Xinjiang and its control strategy[J]. Journal of Natural Disasters, 2007, 16(4):66-69.
[8] 陈晨, 张哲, 王文杰, 等. 基于GIS的伊犁河谷地区生态承载力研究[J]. 环境工程技术学报, 2013, 3(6):532-539.
[8] Chen C, Zhang Z, Wang W J, et al. Study on Yili River valley area ecological carrying capacity based on GIS[J]. Journal of Environmental Engineering Technology, 2013, 3(6):532-539.
[9] 傅茜, 杨德刚, 张新焕, 等. 伊犁河谷县域相对资源承载力时空分异[J]. 中国科学院大学学报, 2016, 33(2):170-177.
doi: 10.7523/j.issn.2095-6134.2016.02.005
[9] Fu Q, Yang D G, Zhang X H, et al. Time and space differentiation of relative carrying capacity of resources in Ili based on improved model[J]. Journal of University of Chinese Academy of Sciences, 2016, 33(2):170-177.
doi: 10.7523/j.issn.2095-6134.2016.02.005
[10] 姚付龙. 伊犁河谷经济与资源、环境耦合研究[J]. 伊犁师范学院学报(自然科学版), 2013, 7(3):63-67.
[10] Yao F L. Study on economic and resource-environment coupling in Yili valley[J]. Journal of Yili Normal University (Natural Science Edition), 2013, 7(3):63-67.
[11] 强建华, 于浩. 新疆矿山环境遥感监测成果综述[J]. 中国地质调查, 2016, 3(5):28-34.
[11] Qiang J H, Yu H. Review on remote sensing monitoring results of mine geological environment in Xinjiang[J]. Geological Survey of China, 2016, 3(5):28-34.
[12] 强建华. 遥感技术在新疆南部地区矿山环境调查及生态修复中的应用[J]. 西北地质, 2021, 54(3): 253-258.
[12] Qiang J H. Application of remote sensing techniques in mine environment investigation and ecological restoration in southern Xinjiang[J]. Northwestern Geology, 2021, 54(3): 253-258.
[13] 郑贵元, 张文太, 李建贵, 等. 伊犁河谷不同植被类型的水土保持效果[J]. 安徽农业科学, 2017, 45(1):64-66,78.
[13] Zheng G Y, Zhang W T, Li J G, et al. Effect of several types of vegetation on soil and water conservation in Ili River Valley[J]. Journal of Anhui Agricultural Sciences, 2017, 45(1):64-66,78.
[14] 赵建, 李振武. 基于AHP及模糊数学综合评判的铜陵市矿山地质环境影响评价[J]. 现代矿业, 2023, 39(3):36-41.
[14] Zhao J, Li Z W. Geological environment impact assessment of mine in Tongling based on AHP and fuzzy mathematics comprehensive evaluation[J]. Modern Mining, 2023, 39(3):36-41.
[15] 乔旭俊. 层次分析法在矿山地质环境影响评价中的应用[J]. 山西建筑, 2012, 38(11):66-67.
[15] Qiao X J. The application of hierarchy analysis method in the impact assessment of mine geological environment[J]. Shanxi Architecture, 2012, 38(11):66-67.
[16] 李丽, 孙娅琴, 李菁, 等. 基于层次分析法的江苏矿山地质环境综合评价[J]. 资源节约与环保, 2020(5):10-12.
[16] Li L, Sun Y Q, Li J, et al. Comprehensive evaluation of mine geological environment in Jiangsu Province based on analytic hierarchy process[J]. Resources Economization and Environmental Protection, 2020(5):10-12.
[17] 汪洁, 刘小杨, 杨金中, 等. 基于国产高空间分辨率卫星数据的浙江省矿山环境恢复治理典型模式分析[J]. 国土资源遥感, 2020, 32(3):216-221.doi: 10.6046/gtzyyg.2020.03.28.
[17] Wang J, Liu X Y, Yang J Z, et al. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land and Resources, 2020, 32(3):216-221.doi: 10.6046/gtzyyg.2020.03.28.
[18] 刘林. 层次分析法在露天矿山安全管理中的应用[J]. 湖南安全与防灾, 2022(4):50-53.
[18] Liu L. Application of analytic hierarchy process in safety management of open-pit mines[J]. Hunan Safety and Disaster Prevention, 2022(4):50-53.
[19] 殷亚秋, 蒋存浩, 鞠星, 等. 海南岛2018年矿山地质环境遥感评价和生态修复对策[J]. 自然资源遥感, 2022, 34(2):194-202.doi: 10.6046/zrzyyg.2021136.
[19] Yin Y Q, Jiang C H, Ju X, et al. Remote sensing evaluation of mine geological environment of Hainan Island in 2018 and ecological restoration countermeasures[J]. Remote Sensing for Natural Resources, 2022, 34(2):194-202.doi: 10.6046/zrzyyg.2021136.
[20] 肖淑云, 刘芳, 王利霞. 浅议铁矿矿山生态环境恢复综合治理[J]. 科技风, 2018(3):131.
[20] Xiao S Y, Liu F, Wang L X. Discussion on comprehensive management of ecological environment restoration in iron mines[J]. Technology Wind, 2018(3):131.
[21] 英树威. 铁矿矿山生态环境恢复治理方案研究[J]. 科技资讯, 2011, 9(13):156.
[21] Ying S W. Study on ecological environment restoration and treatment scheme of iron mine[J]. Science and Technology information, 2011, 9(13):156.
[22] 刘海龙. 采矿废弃地的生态恢复与可持续景观设计[J]. 生态学报, 2004, 24(2):323-329.
[22] Liu H L. Ecological restoration and sustainable landscape design of mining wastelands[J]. Acta Ecologica Sinica, 2004, 24(2):323-329.
[23] 周微. 铜矿尾矿库生态修复技术实践[J]. 世界有色金属, 2019(18):290,292.
[23] Zhou W. Practice of ecological restoration technology for copper mine tailings pond[J]. World Nonferrous Metals, 2019(18):290,292.
[24] 李向敏, 王薪淯, 姜磊, 等. 尾矿治理中植物修复技术研究进展[J]. 环境科技, 2019, 32(5):71-75.
[24] Li X M, Wang X Y, Jiang L, et al. Advance of phytoremediation technology in tailings treatment[J]. Environmental Science and Technology, 2019, 32(5):71-75.
[25] 新疆天华矿业有限责任公司. 新疆尼勒克县松湖铁矿矿山地质环境保护与土地复垦方案[R]. 伊犁: 新疆天华矿业有限责任公司, 2020.
[25] Tian Hua Mine Co.Ltd. Geological environment protection and land reclamation plan for Songhu Iron Mine in Nileke Country[R]. Ili: Tian Hua Mine Co.Ltd., 2020.
[1] Qiao HUANG, Yuling PENG, Wenjie QIN. Research on land use suitability evaluation: A case study of Savan water economic zone in Laos[J]. Remote Sensing for Land & Resources, 2018, 30(4): 156-162.
[2] HE Zheng-Min, YAN Yun-Peng, FENG Min, WANG Hong-Rui. The Design and Implementation of Qinghai-Tibet Plateau Environmental and Geological Integrated Appraisement System Based on RS Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(s1): 30-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech