Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (5) : 122-130     DOI: 10.6046/zrzyyg.2024209
|
SD-BASNet:a building extraction network for high-spatial-resolution remote sensing imagery
ZHU Juanjuan1,2(), HUANG Liang1,3(), ZHU Shasha4
1. Kunming University of Science and Technology,Faculty of Land Resource Engineering,Kunming 650093,China
2. Yunnan Institute of Surveying and Mapping of Geology and Mineral Resources Co.,Ltd.,Kunming 650218,China
3. Yunnan International Joint Laboratory for Integrated Sky-Ground Intelligent Monitoring of Mountain Hazards,Kunming 650093,China
4. Kunming General Survey of Natural Resources Center,China Geological Survey,Kunming 650100,China
Download: PDF(5680 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In response to the challenges posed by substantial parameters and the loss of building details during downsampling,this study,inspired by lightweight networks,designed a building extraction network (SD-BASNet) incorporating depthwise separable residual blocks and dilated convolution. First,a depthwise separable residual block was designed in the prediction module of the deep supervision encoder-decoder. Depthwise separable convolution was incorporated into the backbone ResNet to prevent oversized convolutional kernels and reduce the number of network parameters. Second,to mitigate the potential decline in accuracy due to network lightweighting,dilated convolution was integrated into the encoder layer of the post-processing optimization module. This strategy effectively expands the receptive field of feature maps,thereby capturing broader contextual information and enhancing the accuracy of building feature extraction. Experiments on the WHU building dataset showed that the proposed network achieved an mIoU of 92.25%,an mPA of 96.59%,a Recall of 96.50%,a Precision of 93.79%,and a F1-score of 92.61%. Compared with current semantic segmentation networks,including PSPNet,SegNet,DeepLabV3,SE-UNet,and UNet++,the SD-BASNet demonstrated significantly improved accuracy and better completeness of building extraction. Compared with the baseline BASNet,the SD-BASNet also exhibited reductions in both parameter count and runtime,demonstrating its effectiveness.

Keywords building extraction      high-spatial-resolution remote sensing imagery      boundary-aware salient object detection (BASNet)      depthwise separable residual block      dilated convolution     
ZTFLH:  TP79  
Issue Date: 28 October 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Juanjuan ZHU
Liang HUANG
Shasha ZHU
Cite this article:   
Juanjuan ZHU,Liang HUANG,Shasha ZHU. SD-BASNet:a building extraction network for high-spatial-resolution remote sensing imagery[J]. Remote Sensing for Natural Resources, 2025, 37(5): 122-130.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024209     OR     https://www.gtzyyg.com/EN/Y2025/V37/I5/122
Fig.1  Network structure of SD-BASNet
Fig.2  Comparision of standard convolution and DSC
Fig.3  Structures of DSRMs
Fig.4  Schematic diagram of receptive fields with different dilation rates[21]
序号 网络 参数量/106 训练时间/h
BASNet 87.06 11.27
BASNet+DSC 61.54 10.79
BASNet+DC 87.06 11.77
BASNet+DSC+DC(SD-BASNet) 61.96 10.91
Tab.1  Analysis of parameter quantity in different networks
网络 mIoU mPA 召回率 精确率 F1
PSPNet 73.74 80.43 89.62 62.86 73.89
SegNet 77.67 83.26 93.27 67.87 78.57
DeepLabV3 82.30 87.07 94.34 75.39 83.80
SE-UNet 82.95 87.37 95.43 75.74 84.46
UNet++ 83.77 87.92 96.09 76.69 85.30
BASNet 90.10 93.88 98.40 87.44 89.92
SD-BASNet 92.25 96.59 96.50 93.79 92.61
Tab.2  Detection results of different networks (%)
Fig.5  Example drawings of buildings in different scenarios
网络 mIoU mPA 召回率 精确率 F1
PSPNet 74.30 79.84 89.84 61.46 75.26
SegNet 74.64 82.24 96.84 65.48 78.13
DeepLabV3 82.17 87.93 96.80 77.06 85.81
SE-UNet 83.59 88.81 97.87 78.43 87.08
UNet++ 84.77 89.92 97.09 79.69 87.30
BASNet 92.89 96.56 93.99 96.01 94.99
SD-BASNet 93.07 96.81 94.71 96.17 95.41
Tab.3  Detection results of small-scale building (%)
Fig.6  Extraction result of small-scale buildings
网络 mIoU mPA 召回率 精确率 F1
PSPNet 46.14 76.51 78.49 53.75 63.14
SegNet 81.04 87.69 95.42 77.37 85.45
DeepLabV3 81.58 87.97 96.23 77.56 85.89
SE-UNet 83.09 88.80 97.99 78.46 87.15
UNet++ 86.86 84.79 97.14 77.14 85.02
BASNet 89.36 93.58 94.40 90.61 92.51
SD-BASNet 90.18 94.50 94.57 91.81 93.17
Tab.4  Detection results of multi-scale building (%)
Fig.7  Extraction result of multi-scale buildings
网络 mIoU mPA 召回率 精确率 F1
PSPNet 39.58 40.72 40.72 58.62 56.71
SegNet 82.62 90.25 87.19 90.14 88.64
DeepLabV3 84.50 91.90 92.57 88.09 90.28
SE-UNet 88.21 93.85 93.56 91.80 92.67
UNet++ 87.59 92.16 93.31 90.34 91.31
BASNet 91.76 95.39 92.70 97.12 94.86
SD-BASNet 92.34 95.95 92.49 97.59 95.50
Tab.5  Detection results of large-scale building (%)
Fig.8  Extraction result of large-scale buildings
网络 mIoU mPA 召回率 精确率 F1
BASNet 90.10 93.88 98.40 87.44 89.92
BASNet+DSC 86.39 94.80 91.39 93.05 92.70
BASNet+DC 92.56 95.01 96.16 93.24 92.12
SD-BASNet 92.25 96.59 96.50 93.79 92.61
Tab.6  Detection results of ablation tests (%)
Fig.9  Comparison of ablation experiment results
[1] 张卓尔, 潘俊, 舒奇迪. 基于双路细节关注网络的遥感影像建筑物提取[J]. 武汉大学学报(信息科学版), 2024, 49(3):376-388.
[1] Zhang Z E, Pan J, Shu Q D. Building extraction based on dual-stream detail-concerned network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(3):376-388.
[2] 李治, 隋正伟, 傅俏燕, 等. 基于形态学序列和多源先验信息的城市建筑物高分遥感提取[J]. 遥感学报, 2023, 27(4):998-1008.
[2] Li Z, Sui Z W, Fu Q Y, et al. High-resolution remote sensing extraction of urban buildings based on morphological sequences and multi-source a priori information[J]. National Remote Sensing Bulletin, 2023, 27(4):998-1008.
[3] 张云佐, 郭威, 武存宇. 融合CNN和Transformer的遥感图像建筑物快速提取[J]. 光学精密工程, 2023, 31(11):1700-1709.
[3] Zhang Y Z, Guo W, Wu C Y. Fast extraction of buildings from remote sensing images by fusion of CNN and Transformer[J]. Optics and Precision Engineering, 2023, 31(11):1700-1709.
[4] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1979, 9(1):62-66.
[5] Zhang M, Zhang L, Cheng H D. A neutrosophic approach to image segmentation based on watershed method[J]. Signal Processing, 2010, 90(5):1510-1517.
[6] Prewitt J M S. Object enhancement and extraction[J]. Picture Processing and Psychopictorics, 1970, 10(1):15-19.
[7] Luo L, Li P, Yan X. Deep learning-based building extraction from remote sensing images:A comprehensive review[J]. Energies, 2021, 14(23):7982.
[8] 李星华, 白学辰, 李正军, 等. 面向高分影像建筑物提取的多层次特征融合网络[J]. 武汉大学学报(信息科学版), 2022, 47(8):1236-1244.
[8] Li X H, Bai X C, Li Z J, et al. High-resolution image building extraction based on multi-level feature fusion network[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8):1236-1244.
[9] Diwan T, Anirudh G, Tembhurne J V. Object detection using YOLO:Challenges,architectural successors,datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6):9243-9275.
[10] Tahraoui A, Kheddam R, Belhadj-Aissa A. Land change detection in sentinel-2 images using IR-MAD and deep neural network[C]//2023 International Conference on Earth Observation and Geo-Spatial Information (ICEOGI). IEEE, 2023:1-6.
[11] Feng W, Sui H, Hua L, et al. Building extraction from VHR remote sensing imagery by combining an improved deep convolutional encoder-decoder architecture and historical land use vector map[J]. International Journal of Remote Sensing, 2020, 41(17):6595-6617.
[12] Hosseinpoor H, Samadzadegan F. Convolutional neural network for building extraction from high-resolution remote sensing images[C]//2020 International Conference on Machine Vision and Ima-ge Processing (MVIP). IEEE, 2020:1-5.
[13] Ji S, Wei S, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):574-586.
[14] Bouvrie J. Notes on convolutional neural networks[J]. In Practice,2006:47-60.
[15] Cai Y, Chen D, Tang Y, et al. Multi-scale building instance extraction framework in high resolution remote sensing imagery based on feature pyramid object-aware convolution neural network[C]//2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE,2021:2779-2782.
[16] Das P, Chand S. AttentionBuildNet for building extraction from ae-rial imagery[C]// 2021 International Conference on Computing,Communication,and Intelligent Systems (ICCCIS). IEEE,2021:576-580.
[17] Zhang Z, Zhang C, Li W. Semantic segmentation of urban buildings from VHR remotely sensed imagery using attention-based CNN[C]// IEEE International Geoscience and Remote Sensing Symposium. IEEE,2020:1833-1836.
[18] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2):128-135.doi:10.6046/zrzyyg.2021219.
[18] Wang H J, Ge X S. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2):128-135.doi:10.6046/zrzyyg.2021219.
[19] Qin X, Fan D P, Huang C, et al. Boundary-aware segmentation network for mobile and web applications[J/OL]. 2021: 2101.04704. https://arxiv.org/abs/2101.04704v2.
url: https://arxiv.org/abs/2101.04704v2
[20] Chollet F. Xception:Deep learning with depthwise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:1800-1807.
[21] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J/OL]. 2015: 1511.07122. https://arxiv.org/abs/1511.07122v3.
url: https://arxiv.org/abs/1511.07122v3.
[22] Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J/OL]. 2017: 1704.04861. https://arxiv.org/abs/1704.04861v1.
url: https://arxiv.org/abs/1704.04861v1
[23] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[24] Tan M, Le Q V. EfficientNet:Rethinking model scaling for convolutional neural networks[J/OL].2019: 1905.11946. https://arxiv.org/abs/1905.11946v5.
url: https://arxiv.org/abs/1905.11946v5
[25] 季顺平, 魏世清. 遥感影像建筑物提取的卷积神经元网络与开源数据集方法[J]. 测绘学报, 2019, 48(4):448-459.
doi: 10.11947/j.AGCS.2019.20180206
[25] Ji S P, Wei S Q. Building extraction via convolutional neural networks from an open remote sensing building dataset[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(4):448-459.
doi: 10.11947/j.AGCS.2019.20180206
[26] Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017:6230-6239.
[27] Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615 pmid: 28060704
[28] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[J/OL]. 2017: 1706.05587. https://arxiv.org/abs/1706.05587v3.
url: https://arxiv.org/abs/1706.05587v3.
[29] 刘浩, 骆剑承, 黄波, 等. 基于特征压缩激活Unet网络的建筑物提取[J]. 地球信息科学学报, 2019, 21(11):1779-1789.
doi: 10.12082/dqxxkx.2019.190285
[29] Liu H, Luo J C, Huang B, et al. Building extraction based on SE-unet[J]. Journal of Geo-Information Science, 2019, 21(11):1779-1789.
[30] Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet:Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867.
[1] LIU Chenchen, GE Xiaosan, WU Yongbin, YU Haikun, ZHANG Beibei. A method for information extraction of buildings from remote sensing images based on hybrid attention mechanism and Deeplabv3+[J]. Remote Sensing for Natural Resources, 2025, 37(1): 31-37.
[2] QU Haicheng, LIANG Xu. Building extraction from high-resolution images using a hybrid attention mechanism combined with multi-scale feature enhancement[J]. Remote Sensing for Natural Resources, 2024, 36(4): 107-116.
[3] WU Yu, ZHANG Jun, LI Yixu, HUANG Kangyu. Research on building cluster identification based on improved U-Net[J]. Remote Sensing for Land & Resources, 2021, 33(2): 48-54.
[4] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[5] CUI Shiai, CHENG Bo, LIU Yueming. Research on methods of building area extraction from high resolution SAR image based on manifold learning[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 48-56.
[6] FU Ying, GUO Qiaozhen, PAN Yingyang, WANG Dongchuan. Research on building extraction rules based on SPOT6 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 65-69.
[7] WANG Xudong, DUAN Fuzhou, QU Xinyuan, LI Dan, YU Panfeng. Building extraction based on UAV imagery data with the synergistic use of objected-based method and SVM classifier[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 97-103.
[8] WANG Xue, LI Peijun, JIANG Shasha, LIU Jing, SONG Benqin. Building extraction using airborne LiDAR data and very high resolution imagery over a complex urban area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 106-111.
[9] LI Feng, CUI Ximin, YUAN Debao, WANG Qiang, WU Yajun. Extraction of the building region from airborne LiDAR point clouds under complex urban conditions[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 85-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech