|
Abstract Aim ing at tackling the problem that some edge features of buildings are easily blurred or lost in the extraction of buildings with high resolution image by U-Net, this paper proposes an optimized building extraction method, which firstly enhances the edge of buildings with high resolution image and simultaneously improves the partial convolution process of U-Net. Specific process is as follows: Firstly, the domain change recursive filtering method is used to enhance the edge of the building, and the enhanced image is input into U-Net neural network results for training. To make full use of the rich details characteristics of the buildings on the GF-2 images, the authors tried to extract pairs from training images and label patch on the basis of the original U-Net structure and in the process of coding decoding, so as to increase the training data. These patches further strengthened the positive and negative deep learning of high-dimensional feature for buildings, thus successfully realizing building image segmentation. In this paper, the experimental results of the extraction of GF-2 image buildings in Panjin City of Liaoning Province adjacent to Bohai Bay on September 29, 2017 show that the overall classification accuracy of the buildings detected by U-Net is 75.99% for the shaded and unsatisfied area sample data, and the maximum overall classification accuracy of this method can reach 83.12%, which is 7.13 percentage higher than that of the original U-Net network. It is proved that the U-NET model combined with domain change recursive filtering is effective.
|
Keywords
deep learning
domain change recursive filtering
U-Net
edge enhancement
building extraction
|
|
Corresponding Authors:
LI Yixu
E-mail: ywu@niglas.ac.cn;lyxgis@163.com
|
Issue Date: 21 July 2021
|
|
|
[1] |
王伟鹏, 戴声奎. 基于域变换递归滤波的雾天图像复原[J]. 计算机应用研究, 2015, 32(2):638-640.
|
[1] |
Wang W P, Dai S K. Haze image restoration using domain transform recursive filter[J]. Computer Application Research, 2015, 32(2):638-640.
|
[2] |
彭海涛, 柯长青. 基于多层分割的面向对象遥感影像分类方法研究[J]. 遥感技术与应用, 2010, 25(1):149-154.
|
[2] |
Peng H T, Ke C Q. Study on object-oriented remote sensing image classification based on multi levels segmentation[J]. Remote Sensing Technology and Application, 2010, 25(1)149-154.
|
[3] |
Camps-Valls G, Gomez-Chova L, Munoz-Mari J, et al. Composite kernels for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1):93-97.
doi: 10.1109/LGRS.2005.857031
url: http://ieeexplore.ieee.org/document/1576697/
|
[4] |
沈毅. 高分辨率遥感图像处理若干关键技术研究[D]. 南京:南京航空航天大学, 2012.
|
[4] |
Shen Y. Research on some key technologies of high-resolution remote sensing image processing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012.
|
[5] |
眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12):1885-1898.
|
[5] |
Sui H G, Feng W Q, Li W Z, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898.
|
[6] |
Baltsavias E P. Object extraction and revision by image analysis using existing geodata and knowledge:Current status and steps towards operational systems[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2004, 58(3/4):129-151.
|
[7] |
Alarcon-Ramirez A, Rwebangira M R, Chouikha M F, et al. A new methodology based on level sets for target detection in hyperspectral images[J]. IEEE Transactions on Geoence & Remote Sensing, 2016, 54(9):5385-5396.
|
[8] |
Wei G, Wen Y, Haijian Z, et al. Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network[J]. Remote Sensing, 2018, 10(1):131.
doi: 10.3390/rs10010131
url: http://www.mdpi.com/2072-4292/10/1/131
|
[9] |
方旭, 王光辉, 杨化超, 等. 结合均值漂移分割与全卷积神经网络的高分辨遥感影像分类[J]. 激光与光电子学进展, 2018, 55(2):022802.
|
[9] |
Fang X, Wang G H, Yang H C, et al. High resolution remote sensing image classification combined with mean shift segmentation and full convolutional neural network[J]. Advances in Laser and Optoelectronics, 2018, 55(2):022802.
|
[10] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]// International Conference on Neural Information Processing Systems, 2012, 60(2):1097-1105.
|
[11] |
Mou L, Ghamisi P, Zhu X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transaction Geoscience and Remote Sensing, 2017, 55(7):3639-3655.
doi: 10.1109/TGRS.2016.2636241
url: http://ieeexplore.ieee.org/document/7914752/
|
[12] |
陈睿敏, 孙胜利. 基于深度学习的红外遥感信息自动提取[J]. 红外, 2017, 38(8):37-43.
|
[12] |
Chen R M, Sun S L. Automatic extraction of infrared remote sensing information based on deep learning[J]. Infrared, 2017, 38(8):37-43.
|
[13] |
王宁, 程家骅, 张寒野, 等. U-net模型在高分辨率遥感影像水体提取中的应用[J]. 国土资源遥感, 2020, 32(1):35-42.doi: 10.6046/gtzyyg.2020.01.06.
doi: 10.6046/gtzyyg.2020.01.06
|
[13] |
Wang N, Cheng J H, Zhang H Y, et al. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land and Resources, 2020, 32(1):35-42.doi: 10.6046/gtzyyg.2020.01.06.
doi: 10.6046/gtzyyg.2020.01.06
|
[14] |
李越帅, 郑宏伟, 罗格平, 等. 集成U-Net方法的无人机影像胡杨树冠提取和计数[J]. 遥感技术与应用, 2019, 34(5):939-949.
|
[14] |
Li Y S, Zhen H W, Luo G P, et al. Extraction and counting of Populus Euphratica crown using UAV images integrated with U-Net method[J]. Remote Sensing Technology and Application, 2019, 34(5):939-949.
|
[15] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2015, 79(11):3431-3440.
|
[16] |
苏健民, 杨岚心, 景维鹏. 基于U-Net的高分辨率遥感图像语义分割方法[J]. 计算机工程与应用, 2019, 55(7):207-213.
|
[16] |
Su J M, Yang L X, Jing W P. U-Net based semantic segmentation method for high resolution remote sensing image[J]. Computer Engineering and Applications, 2019, 55(7):207-213.
|
[17] |
张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8):1289-1305.
|
[17] |
Zhang H, Wang K F, Wang F Y. Advances and perspectives on applications of deep learning in visual object detection[J]. Journal of Automation, 2017, 43(8):1289-1305.
|
[18] |
伍广明, 陈奇, Shibasaki R, 等. 基于U型卷积神经网络的航空影像建筑物检测[J]. 测绘学报, 2018, 47(6):864-872.
|
[18] |
Wu G M, Chen Q, Shibasaki R, et al. High precision building detection from aerial imagery using a U-Net like convolutional architecture[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):864-872.
|
[19] |
向轩琳. 基于域变换递归滤波的高光谱图像分类方法研究[D]. 长沙:湖南大学, 2018.
|
[19] |
Xiang X L. Research on hyperspectral image classification method based on domain transform recursive filter[D]. Changsha:Hunan University, 2018.
|
[20] |
Gastal E S L, Oliveira M M. Domain transform for edge-aware image and video processing[C]// ACM Transactions on Graphics. 2011, 30(4):1-12.
|
[21] |
Kang X D, Duan P H, Li S T. Hyperspectral image visualization with edge-preserving filtering and principal component analysis[J]. Information Fusion, 2020, 57:130-143.
doi: 10.1016/j.inffus.2019.12.003
url: https://linkinghub.elsevier.com/retrieve/pii/S1566253518303051
|
[22] |
Ronneberger O, Fischer P, Brox T. U-Net:Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention.Springer, 2015:234-241.
|
[23] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(12):2481-2495.
|
[24] |
张浩然, 赵江洪, 张晓光. 利用U-net网络的高分遥感影像建筑提取方法[J]. 遥感信息, 2020, 35(3):143-150.
|
[24] |
Zhang H R, Zhao J H, Zhang X G. High resolution remote sensing image building extraction method using U-net network[J]. Remote Sensing Information, 2020, 35(3):143-150.
|
[25] |
Li R, Liu W, Yang L, et al. DeepUNet:A deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2018, 11(11):3954-3962.
|
[26] |
郝建亭, 杨武年, 李玉霞, 等. 基于FLAASH的多光谱影像大气校正应用研究[J]. 遥感信息, 2008(1):78-81.
|
[26] |
Hao J T, Yang W N, Li Y X, et al. Atmospheric correction of multi-spectral imagery ASTER[J]. Remote Sensing Information, 2008(1):78-81.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|