Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2004, Vol. 16 Issue (3) : 28-32,36,41     DOI: 10.6046/gtzyyg.2004.03.07
Technology and Methodology |
THE ESTIMATION OF LAND SURFACE EMISSIVITY FOR LANDSAT TM6
QIN Zhi-hao1,3, LI Wen-juan2, XU Bin1,4, CHEN Zhong-xin1,4, LIU Jia1,4
1. MOA Key Laboratory of Resource Remote Sensing and Digital Agriculture, Beijing 100081, China;
2. The Spatial Modelling Centre, Ume University, SE 981 28 Kiruna, Sweden;
3. International Institute for Earth System Science, Nanking University, Nanjing 210093, China;
4. Institute of Natural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Download: PDF(3645 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Land surface emissivity (LSE) is an essential parameter for land surface temperature (LST) retrieval from thermal remote sensing data. Up till now, three methods have been proposed for LST retrieval from TM6 data, namely, atmospheric correction, mono-window algorithm and single channel algorithm, which all require LSE as a parameter. In this paper the authors have first reviewed the three methods and then dealt emphatically with the estimation of this parameter. The method was applied to Lingxian area of Shangdong Province in North China Plain, the most important agricultural area in China, for LSE estimation and LST retrieval. The result shows that the method can yield a reasonable estimation of thermal variation of that area.

Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
QIN Zhi-hao, LI Wen-juan, XU Bin, CHEN Zhong-xin, LIU Jia. THE ESTIMATION OF LAND SURFACE EMISSIVITY FOR LANDSAT TM6[J]. REMOTE SENSING FOR LAND & RESOURCES,2004, 16(3): 28-32,36,41.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2004.03.07     OR     https://www.gtzyyg.com/EN/Y2004/V16/I3/28


[1] Qin Zhihao,Karnieli A,Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region[J]. Int. J. Remote Sens.,2001,22(18):3719-3746.





[2] 覃志豪,Zhang M,Karnieli A,et al.. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报,2001,56(4):456-466.





[3] 覃志豪,Li W,Zhang M,et al.. 单窗算法的基本大气参数估计方法[J]. 国土资源遥感,2003,(2):37-43.





[4] Jiménez-Muoz J C,Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. J. Geophys. Res.,2003,(accepted).





[5] Becker F,Li Z L. Surface temperature and emissivity at various scales:definition,measurement and related problems[J]. Remote Sens. Rev.,1995,12:225-253.





[6] Sobrino J A,Raissouni N,Li Z L. A comparative study of land surface emissivity retrieval from NOAA data [J]. Remote Sens. Environ.,2001,75(2):256-266.





[7] 张仁华.对于定量热红外遥感的一些思考[J]. 国土资源遥感,1999,(1):1-6.





[8] 郑兰芬,赵德刚,童庆禧,等.航空热红外多光谱扫描仪(ATIMS)数据比辐射率信息分析和提取[J]. 红外与毫米波学报,1998,17(3):166-170.





[9] 张霞,张兵,郑兰芬,等. 航空热红外多光谱数据的地物比辐射率谱信息提取模型及其应用研究[J]. 红外与毫米波学报,2000,19(5):361-365.





[10] 李召良,Petitcolin F,张仁华.一种从中红外和热红外数据中反演地表比辐射率的物理算法[J]. 中国科学E辑,2000,(30):18-26.





[11] Sobrino J A,Jiménez-Muoza J C,Paolini L. Land surface temperature retrieval from Landsat TM 5[J]. Remote Sens. Environ.,2003,(accepted).





[12] Sobrino J A,Raissouni N,Li Z L. A comparative study of land surface emissivity retrieval from NOAA data [J]. Remote Sens. Environ.,2001,75:256-266.





[13] Labed J,Stoll M P. Spatial variability of land surface emissivity in the thermal infrared band:spectral signature and effective surface temperature[J]. Remote Sens. Environ.,1991,38:1-17.





[14] Humes K S,Kustas W P,Moran M S,et al.. Variability of emissivity and surface temperature over a sparsely vegetated surface [J]. Water Resources Res.,1994,30:1299-1310.





[15] Kerr YH,Lagouarde J P,Imbernon J. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm [J]. Remote Sens. Environ.,1992,41:197-209.





[16] Carlson T N,Ripley D A. On the relation between NDVI,fractional vegetation cover,and leaf area index [J]. Remote Sens. Environ.,1997,62:241-252.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech