Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (6) : 55-63     DOI: 10.6046/zrzyyg.2022422
|
A novel method for the online collaborative analysis of Arctic sea ice data from remote sensing observations and numerical simulations
LIU Yufu1(), XU Hao1, BAI Yuqi1,2()
1. Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds and Their Habitatses, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
2. Tsinghua Urban Institute, Tsinghua University, Beijing 100084, China
Download: PDF(3742 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Arctic region is one of the most sensitive regions to global climate change in terms of response and feedback. Sea ice in the Arctic region affects the Arctic environment, ecosystems, and climate while also exerting profound influences on global ocean circulation, climate, and biodiversity. Hence, gaining a deep understanding of sea ice is critical for understanding the operational mechanisms of the Earth system, predicting climate change trends, conserving ecosystems, and advancing sustainable development. Through remote sensing observations and numerical simulations, substantial scientific data related to the historical distribution and future changes of Arctic sea ice have been acquired. These data are currently stored in large remote sensing science data centers and multiple Earth system simulation data centers involved in the Coupled Model Intercomparison Project (CMIP). However, a thorough comparative analysis of these distributed scientific data is challenged by the downloading of mass data. Based on the CMIP scientific data, this study demonstrated the difficulties encountered in data downloading. Accordingly, this study proposed a novel method and corresponding software solution for online collaborative analysis. Focusing on the sea ice data from remote sensing observations and numerical simulations, this study expounded the deployment and operation of the proposed method in multiple institutions. The proposed method can enrich the technical system for the findability, accessibility, interoperability, and reusability of the scientific data of sea ice. The demonstrated online collaborative analysis system can significantly enhance the analysis and utilization efficiency of sea ice data.

Keywords Arctic sea ice      CMIP      climate model data      collaborative analysis     
ZTFLH:  TP79  
Issue Date: 31 December 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yufu LIU
Hao XU
Yuqi BAI
Cite this article:   
Yufu LIU,Hao XU,Yuqi BAI. A novel method for the online collaborative analysis of Arctic sea ice data from remote sensing observations and numerical simulations[J]. Remote Sensing for Natural Resources, 2025, 37(6): 55-63.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022422     OR     https://www.gtzyyg.com/EN/Y2025/V37/I6/55
Fig.1  Data flow diagram of CMIP
Fig.2  Diagram of the CAFE center and its sub-nodes
接口路径 接口名称 功能备注
/modelfile/query/filter 获取查询条件初始候选值 返回数据模式各字段唯一值,供前端筛选界面使用
/modelfile/query 按条件筛选数据 根据选定字段值查询并返回匹配数据集,支持分页
/task/submit 提交分析任务 向分析后端提交含参数任务,返回提交状态与任务ID
/task/query 查询分析任务执行状态 返回任务执行进度、结果路径或失败原因等信息
Tab.1  CAFE task-related APIs
Fig.3  Diagram of the CAFE task execution process
Fig.4  Diagram of the CAFE user interface analysis function
Fig.5  CAFE node diagram in Tsinghua University
系统子域 MIP阶段 项目活动 研究机构 模型 变量
seaice CMIP6 CMIP CAMS CAMS-CSM1-0 siconc
seaice CMIP6 CMIP CCCma CanESM5 siconc
seaice CMIP6 CMIP CNRM-CERFACS CNRM-CM6-1-HR siconc
seaice CMIP6 CMIP CNRM-CERFACS CNRM-CM6-1 siconc
seaice CMIP6 CMIP CNRM-CERFACS CNRM-ESM2-1 siconc
seaice CMIP6 CMIP EC-Earth-Consortium EC-Earth3-Veg siconc
seaice CMIP6 CMIP EC-Earth-Consortium EC-Earth3 siconc
seaice CMIP6 CMIP IPSL IPSL-CM6A-LR siconc
seaice CMIP6 CMIP MIROC MIROC-ES2L siconc
seaice CMIP6 CMIP MIROC MIROC6 siconc
seaice CMIP6 CMIP MOHC HadGEM3-GC31-LL siconc
seaice CMIP6 CMIP MOHC UKESM1-0-LL siconc
seaice CMIP6 CMIP MPI-M MPI-ESM1-2-HR siconc
seaice CMIP6 CMIP MRI MRI-ESM2-0 siconc
seaice CMIP6 CMIP NCAR CESM2-WACCM siconc
seaice CMIP6 CMIP NCAR CESM2 siconc
seaice CMIP6 CMIP NCC NorCPM1 siconc
seaice CMIP6 CMIP NCC NorESM2-LM siconc
seaice CMIP6 CMIP NOAA-GFDL GFDL-CM4 siconc
seaice CMIP6 CMIP NUIST NESM3 siconc
seaice CMIP6 CMIP NCAR CESM2-FV2 siconc
seaice CMIP6 CMIP CAS FGOALS-f3-L areacello
seaice CMIP6 CMIP CNRM-CERFACS CNRM-CM6-1-HR areacello
seaice CMIP6 CMIP CNRM-CERFACS CNRM-CM6-1 areacello
seaice CMIP6 CMIP EC-Earth-Consortium EC-Earth3-Veg areacello
seaice CMIP6 CMIP EC-Earth-Consortium EC-Earth3 areacello
seaice CMIP6 CMIP MPI-M MPI-ESM1-2-HR areacello
seaice CMIP6 CMIP NCAR CESM2-FV2 areacello
seaice CMIP6 CMIP NCAR CESM2-WACCM-FV2 areacello
seaice CMIP6 CMIP NCC NorCPM1 areacello
seaice CMIP6 CMIP NCC NorESM2-LM areacello
seaice CMIP6 CMIP UA MCM-UA-1-0 areacello
seaice CMIP6 ScenarioMIP CAMS CAMS-CSM1-0 siconc
seaice CMIP6 ScenarioMIP CAS FGOALS-f3-L siconc
seaice CMIP6 ScenarioMIP CAS FGOALS-g3 siconc
seaice CMIP6 ScenarioMIP CCCma CanESM5 siconc
seaice CMIP6 ScenarioMIP CNRM-CERFACS CNRM-CM6-1 siconc
seaice CMIP6 ScenarioMIP CNRM-CERFACS CNRM-ESM2-1 siconc
seaice CMIP6 ScenarioMIP DKRZ MPI-ESM1-2-HR siconc
seaice CMIP6 ScenarioMIP EC-Earth-Consortium EC-Earth3-Veg siconc
seaice CMIP6 ScenarioMIP EC-Earth-Consortium EC-Earth3 siconc
seaice CMIP6 ScenarioMIP IPSL IPSL-CM6A-LR siconc
seaice CMIP6 ScenarioMIP MIROC MIROC-ES2L siconc
seaice CMIP6 ScenarioMIP MIROC MIROC6 siconc
seaice CMIP6 ScenarioMIP MOHC HadGEM3-GC31-LL siconc
seaice CMIP6 ScenarioMIP MOHC UKESM1-0-LL siconc
seaice CMIP6 ScenarioMIP MRI MRI-ESM2-0 siconc
seaice CMIP6 ScenarioMIP NCAR CESM2-WACCM siconc
seaice CMIP6 ScenarioMIP NCAR CESM2 siconc
seaice CMIP6 ScenarioMIP NOAA-GFDL GFDL-CM4 siconc
seaice CMIP6 ScenarioMIP NOAA-GFDL GFDL-ESM4 siconc
seaice CMIP6 ScenarioMIP NUIST NESM3 siconc
Tab.2  CMIP6 data supported by the Tsinghua node
节点 CPU 内存(RAM)/GB 存储数据量/GB
Node 1 32核Intel E5-2650 @2.00 GHz 192 355
Node 2 32核Intel E5-2650 @2.00 GHz 32 221
Node 3 32核Intel E5-2650 @2.00 GHz 64 534
Node 4 8核Intel E3-1230 @3.30 GHz 32 135
Tab.3  Hardware configuration of experimental nodes for performance testing
数据集ID 模式名称 数据源ESGF节点 数据
大小/MB
下载
耗时/s
平均下
载速度/(MB·s-1)
托管
节点
D1 inmcm4 aims3.llnl.gov 879 126 6.97 Node 1
D2 GFDL-CM3 esgdata.gfdl.noaa.gov 617 471 1.31 Node 2
D3 MIROC-ESM aims3.llnl.gov 351 61 5.76 Node 3
D4 HadGEM2-ES esgf-data1.ceda.ac.uk 520 600 0.87 Node 4
Tab.4  Dataset information for performance comparison experiments
用例ID 分析数据集 协同模式 传统模式 总耗时比
节点计
算耗时/s
客户端
总耗时/s
下载耗时/s 执行耗
时/s
总耗
时/s
U1 D1 45 54 126 56 182 1∶3.37
U2 D2 61 68 471 59 530 1∶7.79
U3 D3 37 44 61 41 102 1∶2.32
U4 D4 33 34 600 50 650 1∶19.1
U5 D1&D2 46/57 65 597 86 683 1∶10.5
U6 D1&D3 45/37 52 187 78 265 1∶5.10
U7 D1&D4 45/35 51 726 76 802 1∶15.7
U8 D2&D3 59/38 67 532 85 617 1∶9.21
U9 D2&D4 56/33 64 1 071 93 1 164 1∶18.2
U10 D3&D4 37/31 43 661 67 728 1∶16.9
U11 D1&D2&D3 46/59/37 66 658 89 747 1∶11.3
U12 D1&D2&D4 45/59/30 66 1 197 95 1 292 1∶19.6
U13 D2&D3&D4 61/37/35 68 1 132 93 1 225 1∶18.0
U14 D1&D3&D4 47/38/33 51 787 79 866 1∶17.0
U15 D1&D2&D3&D4 46/63/37/31 70 1 258 102 1 360 1∶19.4
平均值 57.5 670.9 76.6 747.5 1∶13.0
Tab.5  Performance comparison of the 2 schemes under different test cases
Fig.6  Scalability evaluation results of the multi-node collaborative analysis scheme
[1] 唐述林, 秦大河, 任贾文, 等. 极地海冰的研究及其在气候变化中的作用[J]. 冰川冻土, 2006, 28(1):91-100.
[1] Tang S L, Qin D H, Ren J W, et al. The studies of polar sea ice and their contribution to climate change researches[J]. Journal of Glaciology and Geocryology, 2006, 28(1):91-100.
[2] Riihelä A, Bright R M, Anttila K. Recent strengthening of snow and ice albedo feedback driven by Antarctic sea-ice loss[J]. Nature Geoscience, 2021, 14(11):832-836.
doi: 10.1038/s41561-021-00841-x
[3] Di Biagio C, Pelon J, Blanchard Y, et al. Toward a better surface radiation budget analysis over sea ice in the high Arctic Ocean:A comparative study between satellite,reanalysis,and local-scale observations[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(4):e2020JD032555.
[4] Jäkel E, Sperzel T R, Wendisch M, et al. What determines the Arctic solar radiation energy budget at the surface most strongly:Clouds,surface albedo,or the solar zenith angle?[J]. Journal of the European Meteorological Society, 2025,3:100016.
[5] Zhu J L, Liu Y L, Wang X Y, et al. Optical properties and surface energy flux of spring fast ice in the Arctic[J]. Acta Oceanologica Sinica, 2021, 40(10):84-96.
[6] Doney S C, Ruckelshaus M, Emmett Duffy J, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012,4:11-37.
[7] Blanchet M A, Primicerio R, Frainer A, et al. The role of marine mammals in the Barents Sea foodweb[J]. ICES Journal of Marine Science, 2019, 76(Supplement_1):i37-i53.
[8] Pagano A M, Durner G M, Atwood T C, et al. Effects of sea ice decline and summer land use on polar bear home range size in the Beaufort Sea[J]. Ecosphere, 2021, 12(10):e03768.
doi: 10.1002/ecs2.v12.10 url: https://esajournals.onlinelibrary.wiley.com/toc/21508925/12/10
[9] Herman-Mercer N M, Laituri M, Massey M, et al. Vulnerability of subsistence systems due to social and environmental change[J]. Arctic, 2019, 72(3):258-272.
doi: 10.14430/arctic68867
[10] Rantanen M, Karpechko A Y, Lipponen A, et al. The Arctic has warmed nearly four times faster than the globe since 1979[J]. Communications Earth & Environment, 2022,3:168.
[11] Serreze M C, Barry R G. Processes and impacts of Arctic amplification:A research synthesis[J]. Global and Planetary Change, 2011, 77(1/2):85-96.
doi: 10.1016/j.gloplacha.2011.03.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0921818111000397
[12] Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J]. Nature, 2010, 464(7293):1334-1337.
doi: 10.1038/nature09051
[13] Stroeve J C, Serreze M C, Holland M M, et al. The Arctic’s rapidly shrinking sea ice cover:A research synthesis[J]. Climatic Change, 2012, 110(3):1005-1027.
doi: 10.1007/s10584-011-0101-1 url: http://link.springer.com/10.1007/s10584-011-0101-1
[14] Comiso J C, Nishio F. Trends in the sea ice cover using enhanced and compatible AMSR-E,SSM/I,and SMMR data[J]. Journal of Geophysical Research:Oceans, 2008, 113(C2):2007JC004257.
[15] 季青, 庞小平, 许苏清, 等. 极地海冰厚度探测方法及其应用研究综述[J]. 极地研究, 2016, 28(4):431-441.
[15] Ji Q, Pang X P, Xu S Q, et al. Review of technology and application research on polar sea ice thickness detection[J]. Chinese Journal of Polar Research, 2016, 28(4):431-441.
doi: 10.13679/j.jdyj.2016.4.431
[16] 周天军, 邹立维, 陈晓龙. 第六次国际耦合模式比较计划(CMIP6)评述[J]. 气候变化研究进展, 2019, 15(5):445-456.
[16] Zhou T J, Zou L W, Chen X L. Commentary on the coupled model intercomparison project phase 6(CMIP6)[J]. Climate Change Research, 2019, 15(5):445-456.
[17] Cinquini L, Crichton D, Mattmann C, et al. The Earth System Grid Federation:An open infrastructure for access to distributed geospatial data[C]//2012 IEEE 8th International Conference on E-Science.October 8-12,2012, Chicago,IL,USA.IEEE, 2013:1-10.
[18] Liu Y, Wang M, Chen L, et al. A collaborative analysis framework for environmental data (CAFE)[J]. Environmental Modelling & Software, 2018,99:113-126.
[1] LIU Yufu, BAI Yuqi. Global sharing system of Earth simulation data in the Coupled Model Intercomparison Project[J]. Remote Sensing for Natural Resources, 2025, 37(6): 10-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech