Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2008, Vol. 20 Issue (2) : 5-8     DOI: 10.6046/gtzyyg.2008.02.02
Review |
THE APPLICATION OF REMOTE SENSING TECHNOLOGY TO EARTHQUAKE SCIENCE RESEARCH

JING Feng ,SHEN Xu-hui,HONG Shun-ying,OUYANG Xin-yan
Institute of Earthquake Science,China Earthquake Administration,Beijing 100036 ,China
Download: PDF(356 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

As a new spatial observation technology,the remote sensing technology has been applied in various fields. This paper deals with some application results of remote sensing technology in the earthquake science,such as active fault detection,Earth crust deformation,thermal anomaly and seismic hazard evaluation. In recent years,electromagnetic satellites devoted to earthquake research were launched successfully in some countries,e.g.,Russia and France,which yielded quite abundant electromagnetic information relating to the earthquake in the ionosphere. These data are called non-imaging remote sensing information. More and more earthquake scientists have believed that such information is of great significance to earthquake electromagnetic science study and earthquake short-term prediction. Remote sense technology(imaging and non-imaging)used in the earthquake field will heighten China's capability for earthquake monitoring and forecasting.

Keywords TM image      Basalt      Mesa      Water exploiting object areas     
: 

TP79

 
Issue Date: 15 July 2009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
JING Feng, SHEN Xu-Hui, HONG Shun-Ying, OU Yang-Xin-Yan. THE APPLICATION OF REMOTE SENSING TECHNOLOGY TO EARTHQUAKE SCIENCE RESEARCH[J]. REMOTE SENSING FOR LAND & RESOURCES,2008, 20(2): 5-8.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2008.02.02     OR     https://www.gtzyyg.com/EN/Y2008/V20/I2/5
[1] CHAO Zhenhua, CHE Mingliang, HOU Shengfang. Brief review of vegetation phenological information extraction software based on time series remote sensing data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 19-25.
[2] TIAN Lei, FU Wenxue, SUN Yanwu, JING Linhai, QIU Yubao, LI Xinwu. Research on spatial change of the boreal forest cover in Siberia over the past 30 years based on TM images[J]. Remote Sensing for Land & Resources, 2021, 33(1): 214-220.
[3] YU Junchuan, LIU Wenliang, YAN Bokun, DONG Xinfeng, WANG Zhe, LI Na. Inversion of geochemical compositions of basalts based on field measured spectra[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 158-163.
[4] GUO Qiaozhen, NING Xiaoping, WANG Zhiheng, JIANG Weiguo. Impact analysis of landform for land use dynamic change of the partly mountainous area: A case study of Jixian County in Tianjin City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 153-159.
[5] XU Xu, REN Feipeng, HAN Nianlong. Remote sensing monitoring of spatio-temporal changes of ecosystem service values in Hebei Province, 2000—2009[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 187-193.
[6] LIU Juan, CAI Yanjun, WANG Jin. Soil classification of Qinghai Lake basin based on remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 57-62.
[7] XU Chao, ZHAN Jinrui, PAN Yaozhong, ZHU Wenquan. Extraction of cropland information based on multi-temporal TM images[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 166-173.
[8] QIN Yan, DENG Ru-ru, HE Ying-qing, CHEN Lei, CHEN Qi-dong, XIONG Shou-ping. Algorithm for Removing Thick Clouds in TM Image Based on Spectral and Geometric Information[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 55-61.
[9] SHEN Jin-xiang, YANG Liao, CHEN Xi, LI Jun-li, PENG Qing-qing, HU Ju. A Method for Object-oriented Automatic Extraction of Lakes in the Mountain Area from Remote Sensing Image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 84-91.
[10] CHEN Lei, DENG Ru-ru, CHEN Qi-dong, HE Ying-qing, QIN Yan, LOU Quan-sheng. The Extraction of Water Body Information from TM Imagery Based on Water Quality Types[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 90-94.
[11] ZHANG Zhi-xin, DENG Ru-ru, LI Hao, CHEN Lei, CHEN Qi-dong, HE Ying-qing. Remote Sensing Monitoring of Vegetation Coverage in Southern China Based on Pixel Unmixing: A Case Study of Guangzhou City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(3): 88-94.
[12] LIU Yan, DING Tao- , RUAN Hui-Hua, LIN Na. The Monitoring of Land Desertification in the Manasi River Basin Based
on Multi-source Remotely Sensed Data
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 81-84.
[13] SUN Yong-Jun, TONG Qing-Xi, QIN Qi-Ming. THE OBJECT-ORIENTED METHOD FOR WETLAND INFORMATION EXTRACTION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2008, 20(1): 79-82.
[14] ZHANG Li-Su, WU Jia-Ping. REGIONAL LAND USE/COVER CLASSIFICATION WITH
A STRATIFIED AND REGIONALIZED APPROACH:
A CASE STUDY IN QIANTANG RIVER WATERSHED, ZHEJIANG PROVINCE
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(3): 74-77.
[15] QI Zhi-Xin, DENG Ru-Ru. THE ATMOSPHERIC CORRECTION METHOD FOR NONHOMOGENEOUS
ATMOSPHERE BASED ON MANY DARK OBJECTS
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(2): 16-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech