Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (1) : 90-94     DOI: 10.6046/gtzyyg.2012.01.16
Technology Application |
The Extraction of Water Body Information from TM Imagery Based on Water Quality Types
CHEN Lei1,2, DENG Ru-ru1, CHEN Qi-dong1, HE Ying-qing1, QIN Yan1, LOU Quan-sheng2
1. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China;
2. South China Sea Marine Engineering and Environment Institute, SOA, Guangzhou 510300, China
Download: PDF(943 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The lightness values of three types of water, i.e. ordinary, eutrophic and seriously polluted, and vegetation in the shadow of the hill were analyzed in this paper. The results show that the lightness value of TM4 is lower than that of TM3 for ordinary water, whereas things are opposite for vegetation in the shadow of the hill; the eutrophic water contaminated by phytoplankton has strong reflection in TM4, and seriously polluted water has strong absorption in visible band, which the lightness value of TM4 is higher than that of TM3. Thus the eutrophic and polluted water couldn’t be distinguished from vegetation in the shadow of the hill by comparison between TM3 and TM4. According to the extraction method of classification of water quality type the spectral characteristics of the water,the authors set up the thresholds to distinguish various types of water quality, vegetation in the shadow of the hill and other ground objects,and extracted the water distribution information from TM imagery quickly,accurately and efficiently.
Keywords mobile laser scanning data      feature extraction      PCA      classification     
:  TP 79  
  TP 751  
Issue Date: 07 March 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Ting
ZHAN Qing-ming
YU Liang
Cite this article:   
LI Ting,ZHAN Qing-ming,YU Liang. The Extraction of Water Body Information from TM Imagery Based on Water Quality Types[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 90-94.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.01.16     OR     https://www.gtzyyg.com/EN/Y2012/V24/I1/90
[1] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595.
[2] 林强,陈一梅,黄永葛.基于ETM+图像的厦门湾水体信息提取[J].水科学与工程技术,2008(增2):52-54.
[3] 王刚,李小曼,田杰.几种TM影像的水土自动提取方法比较[J].测绘科学,2008,33(3):141-142.
[4] 徐鲁强,刘静霞,秦军,等.水体遥感影像处理的研究[J].计算机工程与应用,2010,46(21):168-170.
[5] 杨莹,阮仁宗.基于TM影像的平原湖泊水体信息提取的研究[J].遥感信息,2010(3):60-64.
[6] 陆家驹,李士鸿.TM资料水体识别技术的改进[J].环境遥感,1992,7(1):17-23.
[7] 杨存建,徐美,黄朝永,等.遥感信息机理的水体提取方法的探讨[J].地理研究,1998,17(增刊):86-89.
[8] Mcfeeters S K.The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features[J].International Journal of Remote Sensing,1996,17(7):1425-1432.
[9] 熊金国,王世新,周艺.不同指数模型提取ALOS AVNIR-2影像中水体的敏感性和精度分析[J].国土资源遥感,2010(4):46-50.
[10] 宋启帆,王少军,张志,等.基于WorldView II图像的钨矿区水体信息提取方法研究——以江西大余县为例[J].国土资源遥感,2011(2):33-37.
[11] 曹荣龙,李存军,刘良云,等.基于水体指数的密云水库面积提取及变化监测[J].测绘科学,2008,33(2):158-160.
[12] 丁凤.一种基于遥感数据快速提取水体信息的新方法[J].遥感技术与应用,2009,24(2):167-171.
[13] 姜腾龙,赵书河,肖鹏峰,等.基于光谱夹角的水体信息提取方法研究[J].国土资源遥感,2009(2):102-105.
[14] 杜云艳,周成虎.水体的遥感信息自动提取方法[J].遥感学报,1998,2(4):264-269.
[15] 曹凯,江南,吕恒,等.面向对象的SPOT 5影像城区水体信息提取研究[J].国土资源遥感,2007(2):27-30.
[16] 都金康,黄永胜,冯学智,等.SPOT卫星影像的水体提取方法及分类研究[J].遥感学报,2001,5(3):214-219.
[17] 韩栋,杨晓梅,纪凯.小卫星遥感影像自动提取水体方法研究[J],测绘科学,2008,33(1):51-54.
[18] 王庆,廖静娟.基于SAR数据的鄱阳湖水体提取及变化监测研究[J].国土资源遥感,2010(4):91-97.
[19] 朱俊杰,郭华东,范湘涛,等.基于纹理与成像知识的高分辨率SAR图像水体检测[J],水科学进展,2006,17(4):525-530.
[20] 杨存建,魏一鸣,王思远,等.基于DEM的SAR图像洪水水体的提取[J],自然灾害学报,2002,11(3):121-125.
[21] 胡德勇,李京,陈云浩,等.单波段单极化SAR图像水体和居民地信息提取方法研究[J],中国图象图形学报,2008,13(2):257-263.
[22] 程明跃,叶勤,张绍明,等.基于模糊加权SVM的SAR图像水体自动检测[J].计算机工程,2009,35(2):219-221.
[23] 窦建方,陈鹰,翁玉昆.基于序列非线性滤波SAR影像水体自动提取[J].测绘通报,2008(9):37-39,45.
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[3] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[4] LI Yuan, WU Lin, QI Wenwen, GUO Zhengwei, LI Ning. A SAR image classification method based on an improved OGMRF-RC model[J]. Remote Sensing for Natural Resources, 2021, 33(4): 98-104.
[5] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[6] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[7] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[8] JIANG Xiao, ZHONG Chang, LIAN Zheng, WU Liangting, SHAO Zhitao. Research progress on classification criterion of geological information products based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 279-283.
[9] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[10] LING Xiao, LIU Jiamei, WANG Tao, ZHU Yueqin, YUAN Lingling, CHEN Yangyang. Application of information value model based on symmetrical factors classification method in landslide hazard assessment[J]. Remote Sensing for Land & Resources, 2021, 33(2): 172-181.
[11] MENG Qing, BAI Hongying, ZHAO Ting, GUO Shaozhuang, QI Guizeng. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Land & Resources, 2021, 33(1): 240-248.
[12] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[13] XU Yun, XU Aiwen. Classification and detection of cloud, snow and fog in remote sensing images based on random forest[J]. Remote Sensing for Land & Resources, 2021, 33(1): 96-101.
[14] ZHANG Li, XIE Yanan, QU Chenyang, WANG Mingquan, CHANG Zheng, WANG Maohua. Estimation of electric power consumption using nighttime light remote sensing data based on K-Means city classification algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 182-189.
[15] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech