Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (2) : 161-167     DOI: 10.6046/gtzyyg.2016.02.25
Technology Application |
Feature extraction and analysis of the Lijiang River water system form based on the Google Earth image
LU Dingge1, WU Hong1, GUO Qi2, CHEN Mengjie1
1. Guilin University of Technology Remote Sensing Institute, Guilin 541004, China;
2. The Third Geological Prospecting Institute of Geology and Mineral Resources Exploration Development Authorities, Luoyang 471023, China
Download: PDF(4420 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to obtain the river system space distribution and river system feature information of the Lijiang River Basin, the authors, with Google Earth images as information source and by using the method of man-machine interactive visual interpretation, extracted basin river system configuration information and compiled water distribution map of Lijiang River basin. On the basis of information extraction and statistics of such factors as the water level, drainage density, stream tributaries branching ratio, length, and intersection angle, the morphological characteristics of Lijiang River Basin system was quantitatively demonstrated. An analysis of control factors based on river system morphology characteristics revealed that the strata and faults are the important controlling factors of Lijiang River morphology, and that the influence of human activity is growing. The research results provide objective scientific basis for the Lijiang River comprehensive control and treatment and also fill the blank in the study of the Lijiang River basin landform.

Keywords polarimetric synthetic aperture Radar      boreal forest      backscatter intensity      scattering mechanism      depolarization     
:  TP79  
Issue Date: 14 April 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Shuai
ZHANG Yonghong
WANG Huiqin
Cite this article:   
QI Shuai,ZHANG Yonghong,WANG Huiqin. Feature extraction and analysis of the Lijiang River water system form based on the Google Earth image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 161-167.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.02.25     OR     https://www.gtzyyg.com/EN/Y2016/V28/I2/161

[1] 承继成,江美球.流域地貌数学模型[M].北京:科学出版社,1986. Cheng J C,Jiang M Q.The Mathematical Model of Watershed Geomorphology[M].Beijing:Science Press,1986.

[2] 王磊,胡伍生,吴波.基于GIS的水系提取方法与分析[J].现代测绘,2004,27(6):45-46. Wang L,Hu W S,Wu B.Base on GIS water system distill method and analyse[J].Modern Surveying and Mapping,2004,27(6):45-46.

[3] 李栋梁.基于TM影像的水系信息提取及变化制图研究[D].南京:河海大学,2006. Li D L.Drainage System Based on TM Image Information Extraction and Change Cartography Research[D].Nanjing:Hohai University,2006.

[4] 刘昱恒,徐宏根.两种不同DEM处理方法提取的水系比较[J].资源调查与环境,2012,33(3):206-210. Liu Y H,Xu H G.Comparisons of water systems extracted from DEM with two different processing methods[J].Resources Survey and Environment,2012,33(3):206-210.

[5] 吴虹,郭远飞,郭建东,等.基于TM/ETM+和MODIS的漓江流域生态环境遥感动态监测[J].国土资源遥感,2007,19(3):56-61.doi:10.6046/gtzyyg.2007.03.13. Wu H,Guo Y F,Guo J D,et al.Long-term and short-term dynamic monitoring of ecological environment variation in the drainage area of the Lijiang River based on TM/ETM+ and MODIS[J].Remote Sensing for Land and Resources,2007,19(3):56-61.doi:10.6046/gtzyyg.2007.03.13.

[6] 秦润君,吴虹,郭琪,等.基于遥感和GIS技术的漓江自然地貌破坏现状调查[J].国土资源遥感,2013,25(1):160-164.doi:10.6046/gtzyyg.2013.01.28. Qin R J,Wu H,Guo Q,et al.Investigation of damage situation of the natural landform along Lijiang River based on GIS and RS[J].Remote Sensing for Land and Resources,2013,25(1):160-164.doi:10.6046/gtzyyg.2013.01.28.

[7] 郝敏.基于TM & QB-2数据的漓江河床水深遥感反演研究[D].桂林:桂林理工大学,2014. Hao M.Remote Sensing Inversion Study of Lijiang River Water Depth Based on TM and QB-2[D].Guilin:Guilin University of Technology,2014.

[8] 曹伯勋.地貌学及第四纪地质学[M].武汉:中国地质大学出版社,1995. Cao B X.Geomorphology and Quaternary Geology[M].Wuhan:China University of Geosciences Press,1995.

[9] Strahler A N.Quantitative analysis of watershed geomorphology[J].Transactions American Geophysical Union,1957,38(6):913-920.

[10] 王金艳,黄永林,谭慧明,等.利用ArcGIS生成水系密度的方法[J].地理空间信息,2010,8(6):101-102. Wang J Y,Huang Y L,Tan H M,et al.New method for drawing river density map with ArcGIS[J].Geospatial Information,2010,8(6):101-102.

[11] Horton R E.Erosional development of streams and their drainage basins:Hydrophysical approach to quantitative morphology[J].Geological Society of America Bulletin,1945,56(3):275-370.

[12] 丁国瑜.活动走滑断裂带的断错水系与地震[J].地震,1982(1):3-8. Ding G Y.Active strike-slip fault zone of the dislocation drainage and earthquake[J].Earthquake,1982(1):3-8.

[13] 蒋亚萍.漓江枯水、功能性断流与水利工程的关系[J].桂林工学院学报,2005,25(4):426-431. Jiang Y P.Low Water and functional cutoff and reservoirs of Lijiang River[J].Journal of Guilin University of Technology,2005,25(4):426-431.

[1] TIAN Lei, FU Wenxue, SUN Yanwu, JING Linhai, QIU Yubao, LI Xinwu. Research on spatial change of the boreal forest cover in Siberia over the past 30 years based on TM images[J]. Remote Sensing for Land & Resources, 2021, 33(1): 214-220.
[2] XU Bin. Unsupervised classification of fully polarimetric SAR data based on non-Gauss distribution[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 90-96.
[3] QI Shuai, ZHANG Yonghong, WANG Huiqin. Analysis of fire disturbed forests scattering characteristics using polarimetric SAR image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 48-53.
[4] WANG Qing, ZENG Qi-ming, LIAO Jing-juan. Extraction and Application of Polarimetric Characteristic Parameters Based on Polarimetric Decomposition[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 103-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech