Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (2) : 90-96     DOI: 10.6046/gtzyyg.2017.02.13
Contents |
Unsupervised classification of fully polarimetric SAR data based on non-Gauss distribution
XU Bin
Department of Electronic Engineering, Sichuan Information Technology College, Guangyuan 608040, China
Download: PDF(811 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  In this paper, an unsupervised algorithm is proposed to classify the data of fully polarimetric synthetic aperture Radar(PolSAR). The proposed method combines the Freeman-Durden with the scattering model based development of the decomposition algorithm and the K-Wishart distribution based on non Gauss. This is mainly composed of three steps. The first is the application of Freeman-Durden decomposition of the pixel to divide the scattering into three types: surface scattering, volume scattering and dihedral scattering, and then by using the shape parameter the scattering type can be divided into three types. After that, the eight neighborhood priori probabilities for each pixel are calculated to improve the classification distance and calculate the cluster centers. Finally, the iterative K-Wishart classifier is applied to PolSAR image for accurate classification and the color padding scheme. Different from Wishart distribution, the K-wishart distribution is not only suitable for uniform regional data description, but also very strong for the general uneven regional data description. The experiment results show that the proposed method has better classification performance than Freeman-Durden decomposition and complex Wishart distribution.
Keywords Loess Plateau      remote sensing      vegetation coverage      returning farmland to forest and windbreak     
Issue Date: 03 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Zhe
QIU Bingwen
WANG Zhuangzhuang
QI Wen
Cite this article:   
LIU Zhe,QIU Bingwen,WANG Zhuangzhuang, et al. Unsupervised classification of fully polarimetric SAR data based on non-Gauss distribution[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 90-96.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.02.13     OR     https://www.gtzyyg.com/EN/Y2017/V29/I2/90
[1] Shi L,Zhang L F,Yang J,et al.Supervised graph embedding for Polarimetric SAR image classification[J].IEEE Geoscience and Remote Sensing Letters,2013,10(2):216-220.
[2] Shang F,Hirose A.Use of Poincare sphere parameters for fast supervised PolSAR land classification[C]//Proceedings of 2013 IEEE International Geoscience and Remote Sensing Symposium.Melbourne,VIC:IEEE,2013:3175-3178.
[3] Wang S,Liu K,Pei J J,et al.Unsupervised classification of fully polarimetric SAR images based on scattering power entropy and copolarized ratio[J].IEEE Geoscience and Remote Sensing Letters,2013,10(3):622-626.
[4] Zhang S,Wang S,Chen B,et al.Classification method for fully PolSAR data based on three novel parameters[J].IEEE Geoscience and Remote Sensing Letters,2014,11(8):39-44.
[5] Cloude S R,Pottier E.An entropy based classification scheme for land applications of Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78.
[6] Lee J S,Grunes M R,Ainsworth T L,et al.Unsupervised classification using polarimetric decomposition and the complex wishart classifier[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2249-2258.
[7] Lee J S,Grunes M R,Pottier E,et al.Unsupervised terrain classification preserving polarimetric scattering characteristics[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):722-731.
[8] Doulgeris A P,Anfinsen S N,Eltoft T.Classification with a non-Gaussian model for PolSAR data[J].IEEE Transactions on Geoscience and Remote Sensing,2008,46(10):2999-3009.
[9] Doulgeris A P,Anfinsen S N,Eltoft T.Automated non-Gaussian clustering of polarimetric synthetic aperture radar images[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3665-3676.
[10] 任俊英,苏彩霞,曹永锋.基于中间层特征的全极化SAR监督地物分类[J].遥感技术与应用,2014,29(2):330-337.
Ren J Y,Su C X,Cao Y F.Supervised land-use classification of full polarization SAR image based on middle level feature[J].Remote Sensing Technology and Application,2014,29(2):330-337.
[11] Lee J S,Grunes M R,Kwok R.Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution[J].International Journal of Remote Sensing,1994,15(11):2299-2311.
[12] Lee J S,Grunes M R,de Grandi G.Polarimetric SAR speckle filtering and its implication for classification[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2363-2373.
[13] 陈 博,王 爽,焦李成,等.贝叶斯集成框架下的极化SAR图像分类[J].西安电子科技大学学报(自然科学版),2015,42(2):45-51.
Chen B,Wang S,Jiao L C,et al.Polarimetric SAR image classification via naive Bayes combination[J].Journal of Xidian University,2015,42(2):45-51.
[14] 赵力文,周晓光,蒋咏梅,等.一种基于Freeman分解与散射熵的极化SAR图像迭代分类方法[J].电子与信息学报,2008,30(1):2698-2701.
Zhao L W,Zhou X G,Jiang Y M,et al.Iterative classification of polarimetric SAR image based on Freeman decomposition and scattering entropy[J].Journal of Electronics & Information Technology,2008,30(1):2698-2701.
[15] 郁文贤,柳 彬,丁拥科,等.高分辨率、多时相SAR图像数据集的构建[J].测绘通报,2014(s1):119-122.
Yu W X,Liu B,Ding Y K,et al.Construction of high resolution multi-temporal SAR image dataset[J].Bulletin of Surveying and Mapping,2014(s1):119-122.
[16] 陈 博,王 爽,焦李成,等.利用0-1矩阵分解集成的极化SAR图像分类[J].电子与信息学报,2015,37(6):1495-1501.
Chen B,Wang S,Jiao L C,et al.Polarimetric SAR image classification via weighted ensemble based on 0-1 matrix decomposition[J].Journal of Electronics & Information Technology,2015,37(6):1495-1501.
[17] 钟微宇,沈 汀.结合多特征和SVM的SAR图像分割[J].计算机应用研究,2013,30(9):2846-2851.
Zhong W Y,Shen T.Multiple features and SVM combined SAR image segmentation[J].Application Research of Computers,2013,30(9):2846-2851.
[18] 杨学志,叶 铭,吴克伟,等.结构保持的双边滤波极化SAR图像降噪[J].电子与信息学报,2015,37(2):268-275.
Yang X Z,Ye M,Wu K W,et al.Speckle reduction for PolSAR image based on structure preserving bilateral filtering[J].Journal of Electronics & Information Technology,2015,37(2):268-275.
[19] 陈 军,杜培军,谭 琨,等.一种基于Pauli分解和支持向量机的全极化合成孔径雷达监督分类算法[J].科学技术与工程,2014,14(17):104-108,142.
Chen J,Du P J,Tan K,et al.A supervised classification algorithm based on Pauli decomposition and SVM on polarimetric SAR image[J].Science Technology and Engineering,2014,14(17):104-108,142.
[20] 马文婷,杨 健,高 伟,等.面向极化SAR图像配准的极化特征[J].清华大学学报(自然科学版),2014,54(2):270-274.
Ma W T,Yang J,Gao W,et al.Polarimetric feature for registration of polarimetric SAR images[J].Journal of Tsinghua University:Science and Technology,2014,54(2):270-274.
[21] 李崇谦.基于K-Wishart分布的极化SAR图像分类研究[D].西安:西安电子科技大学,2013.
Li C Q.Polarimetric SAR Image Classification Based on K-Wishart Distribution[D].Xi’an:Xidian University,2013.
[1] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[2] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[3] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[4] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[5] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[6] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[7] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[8] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[9] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech