Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 174-182     DOI: 10.6046/gtzyyg.2020028
|
A study of runoff scenario prediction in the upper reaches of Hanjiang River based on SWAT model
MA Xinping1,2(), WU Tao3, YU Yuyang2
1. College of Resources, Environment, History and Culture, Xianyang Normal University, Xianyang 712000, China
2. College of Equipment Management and UAV Engineering, Air Force Engineering University, Xi’an 710126, China
3. College of Automation, Northwest Polytechnic University, Xi’an 710129, China
Download: PDF(6290 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The main driving factors of runoff change are climate change and land use. In order to accurately predict the runoff change trend in the upper reaches of Hanjiang River in the future, the authors predicted runoff changes under the two land-use change modes based on SWAT model, weather generator BCC /RCG-WG and Ca-Markov model. The setting of land-use scenarios was based on the prediction results of Ca-Markov model. The results show that, in the future, the runoff in the upper reaches of Hanjiang River will show an obvious upward trend, and the increase rate of runoff under the scenario of increasing forest land is less than that in the natural ecological scenario, which may be related to the increase of ecological water demand caused by the increase of forest land. Therefore, the protection of water resources in the upper reaches of Hanjiang River is not feasible. Researchers should follow the natural growth law of vegetation, continue the current ecological protection policy, try to reduce man-made pollution and improve the ideological awareness of water conservation.

Keywords SWAT model      CA Markov model      BCC/RCG-WG      runoff prediction      upper reaches of Hanjiang River     
ZTFLH:  TP79  
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinping MA
Tao WU
Yuyang YU
Cite this article:   
Xinping MA,Tao WU,Yuyang YU. A study of runoff scenario prediction in the upper reaches of Hanjiang River based on SWAT model[J]. Remote Sensing for Land & Resources, 2021, 33(1): 174-182.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020028     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/174
Fig.1  Overview of the research area
Fig.2  Sub basin division and spatial data preparation
Fig.3  Comparison of simulated and observed monthly runoff during the period of periodic and validation
Fig.4  Driver data atlas
Fig.5  Land use classification map and simulation map for 2015
类别 建设用地 耕地 林地 草地 未利用地 水域 总精度
Kappa系数 0.982 0 0.991 8 0.997 3 0.664 8 0.828 1 0.335 0 0.985 8
Tab.1  Value of accuracy testing indicators for land use simulation results in 2015
Fig.6  Spatial distribution map of land use scenarios in 2025
地类 自然生态情景 林地增加情景
耕地 0.15 -0.21
林地 0.01 5.00
草地 -0.02 -4.45
水域 -0.01 -0.01
建设 -0.12 -0.22
未利用地 -0.01 -0.11
Tab.2  Land use scenario in 2025(%)
Fig.7  Trends of future runoff change under different scenarios
[1] 宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013,44(7):779-790.
[1] Song X M, Zhang J Y, Zhan C S, et al. Research Progress on the impact of climate change and human activities on hydrological cycle[J]. Journal of Water Conservancy, 2013,44(7):779-790.
[2] 夏军, 马协一, 邹磊, 等. 气候变化和人类活动对汉江上游径流变化影响的定量研究[J]. 南水北调与水利科技, 2017,15(1):1-6.
[2] Xia J, Ma X Y, Zou L, et al. Quantitative study on the impact of climate change and human activities on runoff change in the upper reaches of Hanjiang River[J]. South to North Water Diversion and Water Conservancy Science and Technology, 2017,15(1):1-6.
[3] 史超, 夏军, 佘敦先, 等. 气候变化下汉江上游林地植被生态需水量的时空演变[J]. 长江流域资源与环境, 2016,25(4):580-589.
[3] Shi C, Xia J, She D X, et al. Temporal and spatial evolution of ecological water demand of woodland vegetation in the upper reaches of Hanjiang River under climate change[J]. Resources and Environment in the Yangtze River Basin, 2016,25(4):580-589.
[4] Worku T, Khare D, Tripathi S K. Modeling runoff-sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed[J]. Environmental Earth Sciences, 2017,76(16):550.
[5] Ayivi F, Jha M K. Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using SWAT[J]. International Soil and Water Conservation Research, 2018:S2095633917302411.
[6] Moshtaghi B, Niksokhan M H, Ghazban F, et al. Assessing the Impacts of Climate Change on the Quantity and Quality of Agricultural Runoff (Case Study:GOLGOL River Basin)[J]. Irrigation and Drainage, 2018: 468-478.
[7] Shiferaw H, Gebremedhin A, Gebretsadkan T, et al. Modelling hydrological response under climate change scenarios using SWAT model:The case of Ilala watershed,Northern Ethiopia[J]. Modeling Earth Systems and Environment, 2018: 546-556.
[8] Dhami B, Himanshu S K, Pandey A, et al. Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal[J]. Environmental Earth Sciences, 2018,77(1):21.
[9] Yan X M, Lu W X, An Y K, et al. Uncertainty analysis of parameters in non‐point source pollution simulation:Case study of the application of the Soil and Water Assessment Tool model to Yitong River watershed in northeast China[J]. Water and Environment Journal, 2019,33(3):246-237.
[10] Achamyeleh M, van Leon R, Woyessa Y L. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa[J]. Journal of Hydrology:Regional Studies, 2019,25:56-67.
[11] Achamyeleh M. Hydrology;Findings in the Area of Hydrology Reported from University of Oslo (Uncertainty In Simulation of Land-use Change Impacts On Catchment Runoff With Multi-timescales Based On the Comparison of the Hspf and SWAT Models)[J]. Science Letter, 2019,55:66-67.
[12] McDonald S, Mohammed I N, Bolten J D, et al. A web-based decision support system tools:The Soil and Water Assessment Tool online visualization and analyses (SWAT Online) and NASA earth observation data downloading and reformatting tool (NASAaccess)[J]. Environmental Modelling and Software, 2019,87:486-495.
[13] Arnold J G, Srinivasan R, Ramanarayanan T S, et al. Water resources of the Texas gulf basin[J]. Water Science and Technology, 1999,39(3):121-133.
[14] McDonald S, Mohammed I N, Bdten J D, et al. Web-based decision support system tools:The Soil and Water Assessment Tool online visualization and analyses (SWAT Online) and NASA earth observation data downloading and reformatting tool (NASA access)[J]. Environmental Modelling and Software, 2019,2(3):56-68.
[15] 王莺, 张强, 王劲松, 等. 基于分布式水文模型(SWAT)的土地利用和气候变化对洮河流域水文影响特征[J]. 中国沙漠, 2017,37(1):175.
[15] Wang Y, Zhang Q, Wang J S, et al. Hydrological impact of land use and climate change on Tao River Basin Based on SWAT[J]. Deserts in China, 2017,37(1):175.
[16] 赵杰, 徐长春, 高沈瞳, 等. 基于SWAT模型的乌鲁木齐河流域径流模拟[J]. 干旱区地理, 2015,38(4):666.
[16] Zhao J, Xu C C, Gao S T, et al. Runoff simulation of Urumqi River Basin Based on SWAT Model[J]. Arid Land Geography, 2015,38(4):666.
[17] 袁宇志, 张正栋, 蒙金华. 基于SWAT模型的流溪河流域土地利用与气候变化对径流的影响[J]. 应用生态学报, 2015,26(4):989.
pmid: 26259438
[17] Yuan Y Z, Zhang Z D, Meng J H. Effects of land use and climate change on runoff in Liuxi River Basin based on SWAT model[J]. Chinese Journal of Applied Ecology, 2015,26(4):989.
pmid: 26259438 url: https://www.ncbi.nlm.nih.gov/pubmed/26259438
[18] 刘世梁, 安南南, 尹艺洁, 等. 基于SWAT模型的澜沧江中游小流域水土流失与NDVI时空动态相关性[J]. 水土保持学报, 2016,30(1):62.
[18] Liu S L, An N N, Yi Y J, et al. Spatiotemporal correlation between soil erosion and NDVI in the middle reaches of Lancang River Based on SWAT Model[J]. Journal of Soil and Water Conservation, 2016,30(1):62.
[19] 孟现勇, 王浩, 雷晓辉, 等. 基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J]. 生态学报, 2017,37(21):7114.
[19] Meng X Y, Wang H, Lei X H, et al. Simulation, verification and analysis of hydrological related components in Jingbo River Basin based on SWAT model driven by cmdas[J]. Journal of Ecology, 2017,37(21):7114.
[20] 郭军庭, 张志强, 王盛萍, 等. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响[J]. 生态学报, 2014,34(6):1559.
[20] Guo J T, Zhang Z Q, Wang S P, et al. Effects of land use and climate change on Runoff in Chaohe River Basin using SWAT model[J]. Journal of Ecology, 2014,34(6):1559.
[21] 渠勇建, 成向荣, 虞木奎, 等. 基于SWAT模型的衢江流域土地利用变化径流模拟研究[J]. 水土保持研究, 2019,26(1):130-134.
[21] Qu Y J, Cheng X R, Yu M K, et al. Runoff simulation of land use change in Qujiang River Basin based on SWAT model[J]. Study on Soil and Water Conservation, 2019,26(1):130-134.
[22] Anand J, Gosain A K, Khosa R. Prediction of land use changes based on land change modeler and attribution of changes in the water balance of Ganga Basin to land use change using the SWAT model[J]. Science of the Total Environment, 2018,644:503-519.
[23] 吴林川, 宋婴婴. 加权马尔科夫链在榆林市降水量预测中的应用[J]. 人民长江, 2017,48(s1):82-84,100.
[23] Wu L C, Song Y Y. Application of weighted Markov chain in precipitation prediction of Yulin City[J]. People’s Yangtze River, 2017,48(s1):82-84,100.
[24] Gong W F, Li Y, Fan W Y, et al. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata-Markov modelling[J]. International Journal of Applied Earth Observation and Geoinformation, 2015(34):207-216.
[25] 黄晓磊, 刘东云. 基于CA-Markov模型的天津市土地利用预测研究[J]. 中国农业科技导报, 2012,14(5):84-89.
[25] Huang X L, Liu D Y. Study on land use prediction of Tianjin based on Ca Markov model[J]. China Agricultural Science and Technology Guide, 2012,14(5):84-89.
[26] 廖要明. 中国天气发生器BCC/RCG-WG的研究与应用[D]. 北京:北京师范大学, 2012.
[26] Liao Y M. Research and application of BCC/rcg-wg weather generator in China[D]. Beijing:Beijing Normal University, 2012.
[27] Schuol J, Abbaspour K C, Srinivasan R, et al. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model[J]. Journal of Hydrology, 2008,352(1/2):30-49.
[28] 中央政府门户网站. 全国林地保护利用规划纲要(2010—2020年)[EB/OL].(2010-8-24). http://www.gov.cn/zxft/ft205/content_1695019.htm.
url: http://www.gov.cn/zxft/ft205/content_1695019.htm
[28] Central Government Portal. Outline of national forest land protection and utilization planning (2010—2020)[EB/OL].(2010-8-24). http://www.gov.cn/zxft/ft205/content_1695019.htm.
url: http://www.gov.cn/zxft/ft205/content_1695019.htm
[29] 叶加俊. 汉江上游流域径流模拟及未来气候变化响应[D]. 武汉:华中科技大学, 2018.
[29] Ye Jiajun. Runoff simulation and future climate change response in the upper reaches of Hanjiang River[D]. Wuhan:Huazhong University of Science and Technology, 2018.
[1] YAN Qiang, LIAO Jingjuan, SHEN Guozhuang. Remote sensing analysis and simulation of change of Ulan Ul Lake in the past 40 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 152-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech