1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2. Urban Planning and Design Institute of Shenzhen, Shenzhen 518028, China
In the past 30 years, the land use in Shenzhen City has changed dramatically until it is almost saturated now. Using the morphological spatial pattern analysis (MSPA) and the graph theory, this study quantitatively analyzed the landscape connectivity of ecological land in Shenzhen based on ten phases of remote sensing images for land cover or use from 1988 to 2015. The results show that the cultivated land was the main land source in various periods of Shenzhen’s rapid urbanization, while the proportion of forest land used for urban development had risen since 2005. For Shenzhen’s landscape connectivity from 1988 to 2015, the equivalent connected area (ECA) of the ecological land decreased by 1 175.4 km2, and the degree of network connectivity (DOC) decreased by 43.51%. Since the delineation of Shenzhen’s basic ecological control boundary in 2005, the pace of urban habitat degradation has slowed down but the ECA of the ecological land had still been gradually eroded at a rate of 11.9 km2 per year. The analysis of the importance of ecological patches shows that areas like the Yangtai Mountain and Tanglang Mountain are key ecological nodes for landscape connectivity and should be protected with greater efforts.
Wenkui TANG,Lu YU,Weiqi ZHOU, et al. Dynamic changes in the landscape connectivity in Shenzhen City determined based on the long time series of remote sensing data[J]. Remote Sensing for Natural Resources,
2022, 34(3): 97-105.
Liu W, Hughes A C, Bai Y, et al. Using landscape connectivity tools to identify conservation priorities in forested areas and potential restoration priorities in rubber plantation in Xishuangbanna,Southwest China[J]. Landscape Ecology, 2020, 35(2):389-402.
doi: 10.1007/s10980-019-00952-2
url: https://doi.org/10.1007/s10980-019-00952-2
Qi K, Fan Z Q. Evaluation method for landscape connectivity based on graph theory:A case study of natural forests in Minqing County,Fujian Province[J]. Acta Ecologica Sinica, 2016, 36(23):7580-7593.
Chen X, Peng J, Liu Y X, et al. Constructing ecological security patterns in Yunfu City based on the framework of importance-sensitivity-connectivity[J]. Geographical Research, 2017, 36(3):471-484.
Ni Q L, Hou H P, Ding Z Y, et al. Ecological remediation zoning of territory based on the ecological security pattern recognition:Taking Jiawang District of Xuzhou City as an example[J]. Journal of Natural Resources, 2020, 35(1):204-216.
doi: 10.31497/zrzyxb.20200117
url: http://www.jnr.ac.cn/EN/10.31497/zrzyxb.20200117
Wu J S, Liu H M, Huang X L, et al. Dynamic evaluation on landscape connectivity of ecological land:A case study of Shenzhen,Guangdong Province of South China[J]. Chinese Journal of Applied Ecology, 2012, 23(9):2543-2549.
Cao Y K, Fu M C, Xie M M, et al. Landscape connectivity dynamics of urban green landscape based on morphological spatial pattern analysis (MSPA) and linear spectral mixture model (LSMM) in Shenzhen[J]. Acta Ecologica Sinica, 2015, 35(2):526-536.
Shi F N, Liu S L, An Y, et al. Changes of landscape fragmentation and connectivity with urbanization:A case study of Kunming City[J]. Acta Ecologica Sinica, 2020, 40(10):3303-3314.
[21]
Saura S, Rubio L. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape[J]. Ecography, 2010, 33(3):523-537.
Yu Y P, Yin H W, Kong F H, et al. Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis[J]. Chinese Journal of Applied Ecology, 2016, 27(7):2119-2127.
Zhang T, Wang Y L, Liu Y X, et al. Multi-temporal detection of landscape evolution in western Shenzhen City during 1987—2015[J]. Acta Geographica Sinica, 2016, 71(12):2170-2184.
Wu J S, Huang Q, Cao Q W. Effects of basic ecological control line policy on ecosystem services value in Shenzhen[J]. Acta Ecologica Sinica, 2018, 38(11):3756-3765.