|
Abstract Superpixel segmentation has become a new hotspot in remote sensing image preprocessing, but it has the problem of over segmentation. To solve this problem, the authors propose a high resolution remote sensing image segmentation method combining superpixel and graph theory. First, the simple linear iterative clustering (SLIC) algorithm is used to divide the image into superpixels, then the superpixels are merged by the graph theory algorithm, the local variance corresponding to the combined number of the merged numbers are calculated, and the appropriate image segmentation number is determined. Finally, according to the appropriate image segmentation number, the graph theory algorithm is used to recluster and merge the superpixels. Four groups of remote sensing images of different scenes and different spatial resolutions were selected as experimental data. The qualitative and quantitative analysis of experimental results was evaluated. Experimental results show that the proposed method can effectively overcome the effect of over segmentation results and achieve good segmentation results.
|
Keywords
high spatial resolution remote sensing image
superpixel
image segmentation
simple linear iterative clustering
graph theory
|
|
Corresponding Authors:
Liang HUANG
E-mail: kmhuangliang@163.com
|
Issue Date: 30 August 2019
|
|
|
[1] |
刘婧, 李培军 . 结合结构和光谱特征的高分辨率影像分割方法[J]. 测绘学报, 2014,43(5):466-473.
|
[1] |
Liu J, Li P J . A high resolution image segmentation method by combined structural and spectral characteristics[J]. Acta Geodaetica Et Cartographica Sinica, 2014,43(5):466-473.
|
[2] |
苏腾飞, 李洪玉, 屈忠义 . 高分辨率遥感图像道路分割算法[J]. 国土资源遥感, 2015,27(3):1-6.doi: 10.6046/gtzyyg.2015.03.01.
doi: 10.6046/gtzyyg.2015.03.01
|
[2] |
Su T F, Li H Y, Qu Z Y . A study of road segmentation from the high resolution remote sensing image[J]. Remote Sensing for Land and Resources, 2015,27(3):1-6.doi: 10.6046/gtzyyg.2015.03.01.
|
[3] |
Szekely G J, Rizzo M L . Hierarchical clustering via joint between-within distances:Extending ward’s minimum variance method[J]. Journal of Classification, 2005,22(2):151-183.
|
[4] |
Johnson S C . Hierarchical clustering schemes[J]. Psychometrika, 1967,32(3):241-254.
|
[5] |
Ren X, Malik J . Learning a classification model for segmentation [C]//Proceedings 9th IEEE International Conference on Computer Vision.IEEE, 2003,1:10-17.
|
[6] |
Shi J B, Malik J . Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):888-905.
|
[7] |
Felzenszwalb P F, Huttenlocher D P . Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004,59(2):167-181.
|
[8] |
Bergh M V D, Boix X, Roig G , et al. Seeds:Superpixels extracted via energy-driven sampling[J]. International Journal of Computer Vision, 2015,111(3):298-314.
|
[9] |
Moore A P, Prince S J D, PWarrell J, et al. Superpixel lattices [C]//2008 IEEE Conference on Computer Vision and Pattern Recognition.IEEE, 2008: 1-8.
|
[10] |
Wang Y, Ye Y, Shi X . Multi-focus image fusion based on entropy rate superpixel segmentation[J]. Opto-Electronic Engineering, 2014,41(9):56-62.
|
[11] |
Wang C, Guo Y, Zhu J , et al. Video object co-segmentation via subspace clustering and quadratic pseudo-boolean optimization in an MRF framework[J]. IEEE Transactions on Multimedia, 2014,16(4):903-916.
|
[12] |
Fu H, Cao X, Tang D , et al. Regularity preserved superpixels and supervoxels[J]. IEEE Transactions on Multimedia, 2014,16(4):1165-1175.
|
[13] |
Shen J, Du Y, Wang W , et al. Lazy random walks for superpixel segmentation[J]. IEEE Transactions on Image Processing, 2014,23(4):1451-1462.
|
[14] |
Vincent L, Soille P . Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583-598.
|
[15] |
Comaniciu D, Meer P . Mean shift:A robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(5):603-619.
|
[16] |
Achanta R, Shaji A, Smith K , et al.SLIC superpixels[EB/OL].( 2010 -06-00). .
url: https://infoscience.epfl.ch/record/149300/files/SLIC_Superpixels_TR_2.pdf
|
[17] |
Chen J, Li Z, Huang B . Linear spectral clustering superpixel[J]. IEEE Transactions on Image Processing, 2017,26(7):3317-3330.
|
[18] |
Froyland G, Padberg-Gehle K . A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data[J]. Chaos:An Interdisciplinary Journal of Nonlinear Science, 2015,25(8):888-905.
|
[19] |
Levinshtein A, Stere A, Kutulakos K N , et al. TurboPixels:Fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(12):2290-2297.
|
[20] |
Shen J, Hao X, Liang Z , et al. Real-time superpixel segmentation by DBSCAN clustering algorithm[J]. IEEE Transactions on Image Processing, 2016,25(12):5933-5942.
|
[21] |
Guimarães S, Kenmochi Y, Cousty J , et al.Hierarchizing graph-based image segmentation algorithms relying on region dissimilarity:The case of the Felzenszwalb-Huttenlocher method[J]. Mathematical Morphology-Theory and Applications, 2017, hal-01342967v3.
|
[22] |
Schick A, Fischer M, Stiefelhagen R . An evaluation of the compactness of superpixels[J]. Pattern Recognition Letters, 2014,43(1):71-80.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|