自然资源遥感, 2023, 35(2): 132-139 doi: 10.6046/zrzyyg.2022134

技术方法

基于多源地理大数据的城市多中心识别方法

吕永强,1, 于新伟1, 杨朔1, 郑新奇,2

1.山东建筑大学测绘地理信息学院,济南 250101

2.中国地质大学(北京)信息工程学院,北京 100083

Identification of the polycentric urban structure based on multi-source geographic big data

LYU Yongqiang,1, YU Xinwei1, YANG Shuo1, ZHENG Xinqi,2

1. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China

2. School of Information Engineering, China University of Geosciences(Beijing), Beijing 100083, China

通讯作者: 郑新奇(1963-),男,博士,教授。研究方向为地理信息科学与技术、复杂系统仿真建模与决策支持。Email:zxqsd@126.com

责任编辑: 张仙

收稿日期: 2022-04-6   修回日期: 2022-09-6  

基金资助: 山东省自然科学基金青年项目“基于多源数据的中国城市多中心空间结构时空演化特征及其影响因素研究”(ZR2020QD021)

Received: 2022-04-6   Revised: 2022-09-6  

作者简介 About authors

吕永强(1989-),男,博士,讲师。研究方向为GIS空间分析与建模。Email: lvyongqiang19@sdjzu.edu.cn

摘要

地理大数据的出现为城市空间结构研究提供了新的数据源,如何利用地理大数据识别城市多中心空间结构是目前学术界研究热点。文章提出了一种基于多源地理大数据的城市多中心识别方法,使用基于分水岭的区域分割算法获取研究区内部空间单元,使用两阶段城市中心识别算法识别了城市的主中心与次中心,并对所提方法的识别结果进行了对比验证,研究结果表明: ①基于分水岭的区域分割算法可以有效地挖掘夜间灯光数据的空间特征,获取的基础空间单元可适用于识别城市空间结构; ②微博签到数据可以较好地反映城市人类活动,基于微博签到数据与两阶段城市中心识别方法获取的城市中心与城市规划设定的城市中心基本吻合。文章提出的应用地理大数据识别城市多中心的方法,对拓展地理大数据的应用领域、丰富现有城市空间结构研究的方法具有重要意义。

关键词: 夜间灯光; 微博签到; 分水岭算法; 空间单元; 多中心结构

Abstract

The emergence of geographic big data provides a new data source for the study of urban spatial structures. Identifying the polycentric urban structure based on geographic big data is currently a hot research topic in academic communities. This study proposed a method for identifying the polycentric urban structure based on multi-source geographic big data. First, the spatial units in the study area were determined using a region segmentation algorithm based on drainage divides. Then, the urban centers and subcenters were identified using the two-stage algorithm for urban center identification. Finally, the identification results were compared and verified. The results of this study are as follows: ① The region segmentation algorithm based on drainage divides can effectively identify the spatial features of nighttime light data, and the basic spatial units acquired using this algorithm can be used to identify urban spatial structures; ② The urban centers identified based on the Weibo (MicroBlog) check-in data, which can effectively reflect urban human activities, and the two-stage algorithm for urban center identification are roughly consistent with those set in the urban planning. Therefore, the method proposed in this study is of great significance for expanding the application scope of geographic big data and enriching the existing research methods for urban spatial structures.

Keywords: nighttime lighting; Weibo check-in; watershed algorithm; spatial unit; polycentric structure

PDF (3230KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吕永强, 于新伟, 杨朔, 郑新奇. 基于多源地理大数据的城市多中心识别方法[J]. 自然资源遥感, 2023, 35(2): 132-139 doi:10.6046/zrzyyg.2022134

LYU Yongqiang, YU Xinwei, YANG Shuo, ZHENG Xinqi. Identification of the polycentric urban structure based on multi-source geographic big data[J]. Remote Sensing for Land & Resources, 2023, 35(2): 132-139 doi:10.6046/zrzyyg.2022134

0 引言

自改革开放以来,中国正经历着史无前例的快速城市化过程[1-2],城市化率由1978年的17.9%增长到2019年的60.6%,与此同时,快速城市化过程也带来诸如交通拥堵[3]、环境恶化[4]、住房紧缺[5]等城市问题。为实现城市的健康可持续发展,中国主要城市相继出台相应规划政策以发展多中心城市空间结构[6-7],但中国城市多中心空间结构的发展情况仍缺乏全面系统的研究[8]。因此,准确地识别城市多中心既是目前城市问题研究的重要内容,也在规划评估等方面具有重要的现实意义。城市多中心识别受数据可得性的限制较为严重[8-9],现有识别方法也多基于就业、人口等统计数据[10-12],但统计数据周期较长、获取难度较大,使得大空间范围、长时间序列城市多中心识别研究受到限制; 现有中国城市多中心识别研究的空间单元以街道(乡镇)行政区划为主,街道(乡镇)行政区划面积及空间分异较大,不仅会影响人口/就业密度的计算[13],同时街道(乡镇)行政区划内部细节特征被忽略[9,11-12],这很大程度限制了统计数据在城市多中心识别研究中的应用。

随着大数据时代的到来,手机信令、社交媒体签到、兴趣点(point of interest,POI)等地理大数据以其能反映人类活动的特征,为城市多中心识别研究提供了新的数据选择[8-9,14-17]。与传统的统计数据相比,地理大数据具有精度高、覆盖面广、更新快、数据量大等优点,能够弥补传统数据周期长且难以获取等缺点,但其空间分布不稳定且具有严重的空间变异性[9]。与基于传统统计数据的城市多中心识别研究相比,基于地理大数据的城市多中心识别研究案例相对较少,研究中使用的方法多为阈值法或空间统计法[9,18],且相关研究中空间单元多为规则格网[9,14,17]。因此,如何为地理空间大数据提供稳定的空间单元是城市多中心识别研究的重要议题。NPP-VIIRS夜间灯光数据在社会经济指标估算和城市化等研究中取得了广泛应用。受道路、机场、港口、工业园等内部灯光的影响,NPP-VIIRS数据不能准确表征城市内部经济指标与人类活动,但数据较高的空间稳定性使其在描述城市景观格局与基础设施分布方面表现出更大的潜力[8]。部分学者使用NPP-VIIRS夜间灯光数据对城市内部区域进行区块分割,进而用于城市多中心识别研究。Cai等[9]使用多主体的面向对象分割算法框架对夜间灯光数据进行分割; Lou等[8]使用eCognition软件中的多尺度分割算法对夜间灯光数据进行分割。然而,现有2种算法较为复杂,且算法中参数的设定对2种区域分割算法结果影响较大,这些特点使得面向对象分割算法框架的应用受到限制。

本文提出了一种新的基于夜间灯光数据与地理大数据的城市多中心识别方法框架,首先使用分水岭分割算法对NPP-VIIRS夜间灯光数据进行区域分割,获取城市多中心识别研究的基本空间单元; 其次使用微博签到数据表征城市内部人类活动,使用两阶段方法识别城市中心进而分析城市空间结构特征; 最后以北京、上海、重庆为例,验证本文提出的城市中心识别框架的可靠性。本研究拓展了基于地理空间大数据的城市空间结构研究思路与方法,对中国城市多中心空间结构发展分析和规划评估等具有较强参考价值。

1 研究区概况与数据源

1.1 研究区概况

本文选取2015年北京、上海、重庆3个特大城市的市辖区作为研究区,研究区范围如图1所示。为保证研究区的连续性,上海市崇明区,重庆市万州区、黔江区不作为本文的研究区,2015年11月北京市密云县和延庆县撤县设区,故本研究不将其纳入研究范围。北京、上海作为中国最著名的2个超大型城市,其城市空间结构实证研究案例较多,可与本文研究成果进行对比分析; 3个城市在地理区位与地形条件方面存在差异,可用于验证本文研究方法的可靠性。

图1

图1   研究区示意图

Fig.1   The study area


1.2 数据源及其预处理

1)NPP-VIIRS夜间灯光数据。NPP-VIIRS夜间灯光数据来源于美国国家海洋和大气管理局(https://ngdc.noaa.gov/eog/viirs/),本文使用排除了散射光影响的“vcmcfg”格式月合成DNB数据(2014年12月),此数据为地理栅格数据,空间分辨率为15″,单位为nano·Watt·cm-2·sr-1。使用ArcMap软件对数据进行坐标转换与重采样,将其坐标系转换为Albers Equal Area,空间分辨率为500 m,并使用研究区矢量面数据进行裁剪,获取覆盖研究区的栅格数据。

2)新浪微博签到数据。研究表明,与手机信令数据和POI数据相比,社交媒体签到数据更适用于城市空间结构的相关研究[9,19]。本文使用新浪微博签到数据来源于GitHub(https://github.com/lzxue/WeiboDataShare),数据获取时间为2014年11月,全国总签到次数1.652亿次,数据量大,覆盖时空范围广,保证微博数据的时空稳定性。选取北京、上海、重庆3市签到数据,利用每个签到点显示的经纬度坐标将其转化为矢量点。

2 研究方法

2.1 基于分水岭的区域分割算法

城市内部空间单元的缺失使得基于人类活动点数据的城市多中心识别研究受到限制,为实现基于地理大数据的城市多中心识别,必须获取城市内部稳定的空间单元。与DMSP-OLS夜间灯光数据相比,NPP-VIIRS夜间灯光数据不受灯光饱和效应的影响,能够很好地区分城市内部精细尺度上的空间差异[20]。如图2所示,NPP-VIIRS夜间灯光数据在区域尺度上显示出基本的空间分布特征,灯光强度较大的区域形成了类似地形中的“山峰”,而“山峰”之间的灯光强度低值形成了类似于地形中的“山谷”。每个“山峰”的顶点可认为是灯光强度的热点,热点在城市区域中表现出较大的空间差异,热点区根据灯光强度最大值点及影响范围可对城市区域范围进行像元尺度分割。因此,基于灯光影像的区域分割过程转换为求灯光热点及其影响范围的过程。

图2

图2   基于分水岭的区域分割算法示意图

Fig.2   A diagram of the watershed-based partition approach


本文使用基于分水岭的区域分割算法对NPP-VIIRS灯光影像进行分割,分水岭算法是一种基于拓扑的形态分割算法,算法将图像视为拓扑地貌,获取局部极小值及其影响区域(集水盆)的分界线[20]。利用MATLAB软件中内置的分水岭算法对图像进行处理,在算法过程中,将灯光强度视为海拔高度,为使输入的影像符合分水岭算法的要求,需对灯光影像进行变换。公式为:

TNTLi,j=max(NTL)-ONTLi,j

式中: max(NTL)为输入的栅格数据数组的最大值; ONTLi,jTNTLi,j为数组第i行第j列的原始值与变化后的值。分割算法结束后,将面积较小的空间单元(<2 km2)按照公共边最大原则合并到相邻的空间单元中。

2.2 两阶段城市多中心识别

识别城市多中心是城市空间结构研究的重要环节[21]。城市中心一般包含2方面特征: ①中心内部要素(就业和人口等活动)密度显著高于周边区域; ②城市中心范围内要素总量足够大使其对周边区域具有一定影响。常用的识别方法主要包含阈值法[22]、空间聚类模型[23-26]、参数模型[27]、非参数模型法[28-29],其中,阈值法最为简便,但阈值的设定依赖于研究者对研究区的先验知识[11,28,30]; 空间聚类模型、参数模型与非参数模型不依赖先验知识,但空间聚类模型多用于格网数据[9],难以识别郊区的中心[31]; 参数模型假设城市以主中心为原点对称分布,与真实的城市发展不符[32]; 非参数模型可以更好地拟合城市密度曲面,识别出中心城区及郊区的次中心[13,33],但方法操作较为复杂。本文参考Lee[34]的研究,对原始的非参数模型方法进行改进,采用两阶段方法识别城市中心。

第一阶段,在计算每个空间单元微博签到密度的基础上,将点密度的平方根表示为其与空间单元中心坐标的关系,即D =f(x,y),采用自动平滑系数的局部加权回归方法(locally weighted regression,LWR)拟合微博签到点密度曲面[35]。局部回归中以每个街道中心点为中心确定邻域范围,函数根据修正的偏差赤池信息量准则(Akaike information criterion,AIC)自动确定邻域大小,邻域范围内所有观测值点权重weight计算方式为:

weight=3251-distijdistimax33

式中: distij为邻域范围内各点到点i的距离; distimax为邻域范围内各点到点i的距离的最大值。局部加权回归通过逐点拟合的方式得到回归曲面,选取拟合曲面上空间单元的正残差显著性水平在5%以上的空间单元,并将其中具有公共边的空间单元进行合并,将其视为候选次中心。

第二阶段,对不同城市而言,城市中心的微博点密度阈值各不相同,本文采用相对阈值分割的方式对候选中心进行筛选,以每个城市总签到数据的n%作为标准[18,36],删除内部签到点总量较小的候选中心。n的计算公式为:

n=10/NumWeibo

式中NumWeibo为城市内微博签到点的总数量。识别的城市中心中,将微博签到点数量最大的中心视为主中心,其他的为次中心。

3 结果与分析

3.1 区域分割算法结果

使用基于分水岭的区域分割算法对北京、上海、重庆城市范围内NPP-VIIRS夜间灯光数据进行区域分割,并将分割后的子区域转为矢量面数据,结合微博签到点数据,采用叠置分析的方式计算每个空间单元内部的微博签到点密度,基于分水岭算法的分割结果如图3所示。城市空间单元统计结果如表1所示。

图3

图3   基于分水岭的区域分割算法结果

Fig.3   Spatial divisions partitioned by the watershed-based partition approach


表1   城市空间单元统计

Tab.1  Statistic of different urban spatial units

指标统计值北京市上海市重庆市
研究区面积/km2总和12 186.125 448.0628 657.55
数量/个总和1 1927751 706
空间单元面积/km2最大值98.2538.00124.13
平均值10.227.0316.80
标准差10.454.8714.67
微博签到点数量/个总和20 789 25016 755 5843 210 651
平均值17 440.6521 620.111 881.98
n%45 595.2340 933.5917 918.29
微博签到
点密度/
(个·km-2)
最大值101 688.70151 953.6030 356.67
平均值2 420.883 750.261 767.62

新窗口打开| 下载CSV


北京、上海、重庆分别有1 192个、775个、1 706个空间单元,空间单元平均面积分别为10.22 km2,7.03 km2,16.80 km2,空间单元数量与研究区面积呈现正相关关系,且郊区空间单元一般大于城市中心空间单元。对比3个城市空间单元来看,重庆市空间单元面积的平均值、最大值及标准差最大,北京市次之,上海市最小。上海市地处长三角平原,经济发展水平最高,因此其内部空间单元面积差异最小; 重庆市地形以山地丘陵为主,灯光分布较为分散,部分山地地区灯光基本为0,因此郊区空间单元面积最大值为124.13 km2,远大于中心城区,各个空间单元面积差异最大; 北京市介乎两者之间,空间单元平均大小与差异位于中间。从3个城市各空间单元微博签到点数量及密度来看,上海市微博签到点数量最大,平均密度最大,北京次之,重庆最低,从点密度的空间分布来看,3个城市显示出不同的内部空间结构特征。

3.2 城市多中心识别结果

使用两阶段的城市多中心识别算法,基于空间单元微博签到点密度数据识别3个城市的多中心,识别结果如图4表2所示。北京、上海、重庆表现出多中心的城市空间结构,其内部的中心数量分别为17,11,12。其中,北京市17个城市中心微博签到点数量约占全市的83.78%,主中心面积为524 km2,其内部微博签到点数量为15 033 714,占全部中心内签到点数量的86.31%; 上海市11个城市中心微博签到点数量约占全市的86.26%,主中心面积为498 km2,其内部微博签到点数量占全部中心签到点数量的86.79%; 重庆市12个城市中心微博签到点数量约占全市的91.30%,主中心面积为421 km2,其内部微博签到点占全部中心签到点数量的80.08%。从3个城市中心的空间分布情况来看,北京市的次中心主要集中在近郊区,部分远郊区的新城新区中心也可识别为次中心; 上海市的次中心空间分布上距离城市主中心较远; 重庆市受内部山地地形的影响,次中心分布更为分散。从3个城市内部签到点数量来看,城市内部的活动主要集聚在城市中心,其中主中心集聚了绝大部分的人类活动,在城市空间结构中发挥着重要作用; 城市内部存在着相当数量的次中心,但次中心内人类活动相对于主中心较少,次中心的发育程度较弱,城市仍表现为强主中心的多中心空间结构。

图4

图4   两阶段法城市中心识别结果

Fig.4   Locations of urban centers identified by a two-stage method in different cities


表2   城市中心指标统计

Tab.2  Statistic of different urban centers in different cities

指标统计值北京市上海市重庆市
中心数量/个全市171112
微博签到点数/个全市20 789 25016 755 5843 210 651
所有中心17 418 00114 452 6742 931 382
主中心15 033 71412 543 1562 347 317
微博签到点比重/%所有中心/全市83.7886.2691.30
主中心/全部中心86.3186.7980.08

新窗口打开| 下载CSV


4 讨论

4.1 空间单元对比分析

空间单元的大小会影响密度计算结果,进而影响城市空间结构识别结果,栅格单元过小,将导致空间单元密度出现大量零值; 空间单元过大,空间单元密度计算结果空间异质性过小,进而影响城市中心识别效果。因此,选取合适的空间单元是城市空间结构研究的重要环节。本文对前人研究中不同城市选取的空间单元面积进行统计,结果如表3所示。美国城市多中心识别研究中,常以普查区(census tracts)作为研究单元,研究选用的空间单元面积从1.09 km2到19.19 km2不等; 首尔市城市多中心识别研究中以邑、面、洞(eup-myeon-dong)作为基本单元,平均面积约为12.64 km2; 巴塞罗那与巴黎分别以自治市(municipalities)、市镇(communes)作为基本研究单元,平均面积各为19.51 km2与9.28 km2; 中国城市多中心识别研究中,常以街道(乡镇)作为基本空间单元,面积分别为38.14 km2(北京)、26.48 km2(上海)、44.47 km2(广州)、44.51 km2(深圳)。街道(乡镇)空间单元平均面积以及城市中心与郊区空间单元面积差异相比国外基本空间单元均较大,这会对城市多中心识别结果造成一定影响,因此,寻找平均面积及面积差异均较小的空间单元成为中国城市空间结构研究的重点与难点。

表3   不同研究中选取的空间单元平均面积

Tab.3  The average area of spatial units selected in different studies

城市单元平
均面积/
km2
参考文献城市单元平
均面积/
km2
参考文献
北京38.14孙铁山等[13]巴塞罗那19.51Garcia-López
[41]
上海26.48魏旭红等[37]首尔12.64Nam等[42]
广州44.47蒋丽等[38]芝加哥1.09McMillen[28]
深圳44.51曾海宏等[39]达拉斯2.72McMillen[28]
洛杉矶4.68Pereira等[40]休斯顿6.73McMillen[28]
匹兹堡19.19Pereira等[40]洛杉矶4.51McMillen[28]
圣保罗20.45Pereira等[40]新奥尔良14.61McMillen[28]
巴黎9.28Pereira等[40]旧金山3.65McMillen[28]

新窗口打开| 下载CSV


表1所示,基于分水岭的区域分割算法划分的北京、上海、重庆3市空间单元面积平均值及标准差分比为10.22 km2,7.03 km2,16.80 km2以及10.45 km2,4.87 km2,14.67 km2,其面积大小与西方城市选用的空间单元面积较为接近,且其空间单元面积标准差相较于街道(乡镇)也有较大程度降低(北京市街道(乡镇)面积标准差为53.4 km2); 与多主体的面向对象分割算法结果[9]相比,本文得到的空间单元平均面积与面积差异更小,且空间单元的边界更为平滑。由此可知,本文基于分水岭的区域分割算法得到的空间单元大小合适,且城市中心与郊区空间单元的一致性方面效果更好,适用于城市多中心识别的相关研究。

4.2 城市中心识别结果对比分析

为保证城市中心识别结果的可靠性,本文收集3个城市对标2020年的《城市总体规划》,并将《城市总体规划》划定的城市中心与本文识别的城市多中心进行对比,验证本文城市多中心识别算法的准确性。

《北京城市总体规划(2004—2020)》中将北京市中心城市设为城市主中心,这与本文识别结果相同,除通州次中心因城市发展与主中心连接成片之外,石景山、昌平、房山、顺义、怀柔、大兴等区中心街道均被识别为城市次中心,北京经济技术开发区、沙河地区也被识别为城市次中心,平谷区中心街道以及永乐经济开发区内部微博签到点较少,没有被识别为城市次中心; 除规划划定的次中心之外,本文还将北京首都国际机场、瀛海—马驹桥、北七家镇、东小口—来广营识别为次中心。《上海城市总体规划(1999—2020)》中设定的城市主中心与本文识别结果近似,城市规划设定的11个次中心中,除城桥地区不在研究区范围之外,其余中心均可在本文研究结果中找到,但其中闵行—奉贤、松江—青浦因城市发展等原因,2个市辖区次中心逐渐合并; 除城市规划划定的次中心之外,奉贤海湾旅游区也被识别为上海市次中心(可在2035年城市总体规划中看到)。《重庆市总体规划(2007—2020)》设定重庆都市区“多中心组团式”空间结构,本文识别的城市主中心以渝中区为中心,沙坪坝区、北碚区与主中心较远,被识别为城市次中心,这与城市规划中设定的主中心略有差别; 次中心中,除綦江、南川2个次中心发育水平较低之外,合川、璧山、江津、长寿均能识别为显著的城市次中心; 此外,重庆都市区之外的巴南、涪陵、铜梁、大足、永川也被识别为城市次中心。

总体来看,本文基于地理大数据的城市多中心识别方法对3个城市主中心、次中心的识别效果较好,识别结果与城市规划设定的城市中心基本吻合,城市多中心识别方法结果总体上接近于城市空间结构真实状况。

5 结论

本文基于微博签到数据、夜间灯光数据等易于获取的地理大数据,使用基于分水岭的区域分割算法以及两阶段城市中心识别算法识别了3个城市的多中心,并对本文方法的研究成果进行了对比验证,得到相关结论如下:

1)基于分水岭的区域分割算法可以打破现有城市行政区划的限制,更好地获取城市空间单元; 与前人空间结构研究成果对比发现,算法划分的空间单元面积的均值与方差均小于城市街道(区县)空间单元,适合应用于城市空间结构的相关研究。

2)基于微博签到数据以及两阶段城市中心识别方法,可以识别出北京、上海、重庆3个城市的多中心,识别结果与城市规划设定的城市多中心结构基本吻合,本文城市中心识别方法结果满足分析需要。

3)提出了一种新的应用地理大数据识别城市多中心的方法,此方法可应用于基于其他地理大数据的全球大城市城市空间结构研究,并对拓展地理大数据的应用领域、丰富现有城市空间结构研究的方法具有重要意义。

本研究中微博签到数据可以很大程度上代指人类活动,但微博用户基本不涉及老人、儿童及贫困人群,因此数据本身存在一定偏差,下一步可使用手机信令、微信点数据等地理大数据作为本文基础数据进行城市空间结构研究; 本文方法城市中心识别过程中,微博点总量阈值的选取会对结果造成一定影响; 此外,本文研究方法适用于中心城区面积较大的大城市,而中小城市中心城区面积较小,识别的空间单元较少,不容易识别出多中心空间结构。

参考文献

Huang D, Liu Z, Zhao X.

Monocentric or Polycentric? The urban spatial structure of employment in Beijing

[J]. Sustainability, 2015, 7(9):11632-11656.

DOI:10.3390/su70911632      URL     [本文引用: 1]

He C, Chen T, Mao X, et al.

Economic transition,urbanization and population redistribution in China

[J]. Habitat International, 2016, 51:39-47.

DOI:10.1016/j.habitatint.2015.10.006      URL     [本文引用: 1]

Kong X, Xu Z, Shen G, et al.

Urban traffic congestion estimation and prediction based on floating car trajectory data

[J]. Future Generation Computer Systems, 2016, 61(c):97-107.

[本文引用: 1]

Zheng S, Kahn M E.

A new era of pollution progress in urban China

[J]. Journal of Economic Perspectives, 2017, 31(1):71-92.

DOI:10.1257/jep.31.1.71      URL     [本文引用: 1]

Over the last 30 years, China's economy has boomed. This trend has lifted hundreds of millions of Chinese out of poverty but it has also sharply increased local, regional, and global pollution levels. We look at the rise in air pollution over recent decades, and the perhaps surprising finding that in many of China's urban areas, levels of particulates (of less than 10 microns) have been decreasing during the last 10 to 15 years. We then turn to the costs and tradeoffs of air pollution, including costs to human health, reductions in worker productivity, and how people are seeking to reduce their exposure to pollution as shown by compensating differentials in real estate prices and purchases of masks and air filters. We discuss how rising incomes tend to raise the demand for environmental amenities and thus increase political pressure for environmental protection, and then we turn to the policy tools that China has used to reduce pollution. We conclude by arguing that as China's government is preparing for an additional 300 million people to move to urban areas over the next 30 years, it will have a number of opportunities for China to reduce pollution through a shift from manufacturing to services, along with various steps to improve energy efficiency and resource conservation. Overall, it seems that China is on track to improve its environmental performance in the years ahead.

Wang D, Kwan M P.

Selected studies on urban development issues in China:Introduction

[J]. Urban Geography, 2017, 38(3):360-362.

DOI:10.1080/02723638.2016.1158037      URL     [本文引用: 1]

孙斌栋, 魏旭红.

多中心结构:我国特大城市的未来形态

[J]. 人民论坛·学术前沿, 2015(17):4-15.

[本文引用: 1]

Sun B D, Wei X H.

Multi-centered structure:The future pattern of mega-cities in China

[J]. Frontiers, 2015(17):4-15.

[本文引用: 1]

孙铁山.

郊区化进程中的就业分散化及其空间结构演化——以北京都市区为例

[J]. 城市规划, 2015, 39(10):9-15.

[本文引用: 1]

Sun T S.

Employment decentralization and evolution of employment spatial structure amid suburbanization:An empirical study on Beijing metropolitan area

[J]. City Planning Review, 2015, 39(10):9-15.

[本文引用: 1]

Lou G, Chen Q, He K, et al.

Using nighttime light data and POI big data to detect the urban centers of Hangzhou

[J]. Remote Sensing, 2019, 11(15):1821.

DOI:10.3390/rs11151821      URL     [本文引用: 5]

The worldwide development of multi-center structures in large cities is a prevailing development trend. In recent years, China’s large cities developed from a predominantly mono-centric to a multi-center urban space structure. However, the definition and identification city centers is complex. Both nighttime light data and point of interest (POI) data are important data sources for urban spatial structure research, but there are few integrated applications for these two kinds of data. In this study, visible infrared imaging radiometer suite (NPP-VIIRS) nighttime imagery and POI data were combined to identify the city centers in Hangzhou, China. First, the optimal parameters of multi-resolution segmentation were determined by experiments. The POI density was then calculated with the segmentation results as the statistical unit. High–high clustering units were then defined as the main centers by calculating the Anselin Local Moran’s I, and a geographically weighted regression model was used to identify the subcenters according to the square root of the POI density and the distances between the units and the city center. Finally, a comparison experiment was conducted between the proposed method and the relative cut-off_threshold method, and the experiment results were compared with the evaluation report of the master plan. The results showed that the optimal segmentation parameters combination was 0.1 shape and 0.5 compactness factors. Two main city centers and ten subcenters were detected. Comparison with the evaluation report of the master plan indicated that the combination of nighttime light data and POI data could identify the urban centers accurately. Combined with the characteristics of the two kinds of data, the spatial structure of the city could be characterized properly. This study provided a new perspective for the study of the spatial structure of polycentric cities.

Cai J, Huang B, Song Y.

Using multi-source geospatial big data to identify the structure of polycentric cities

[J]. Remote Sensing of Environment, 2017, 202:210-221.

DOI:10.1016/j.rse.2017.06.039      URL     [本文引用: 10]

Li Y.

Towards concentration and decentralization:The evolution of urban spatial structure of Chinese cities,2001—2016

[J]. Computers,Environment and Urban Systems, 2020, 80:101425.

DOI:10.1016/j.compenvurbsys.2019.101425      URL     [本文引用: 1]

Sun T.

A longitudinal study of changes in intra-metropolitan employment concentration in Beijing:Decentralisation,reconcentration and polycentrification

[J]. Urban Studies, 2020, 57(5):848-765.

[本文引用: 3]

Sun T, Lyu Y.

Employment centers and polycentric spatial development in Chinese cities:A multi-scale analysis

[J]. Cities, 2020, 99:102617.

DOI:10.1016/j.cities.2020.102617      URL     [本文引用: 2]

孙铁山, 王兰兰, 李国平.

北京都市区人口——就业分布与空间结构演化

[J]. 地理学报, 2012, 67(6):829-840.

DOI:10.11821/xb201206010      [本文引用: 3]

本研究应用非参数计量方法,实证刻画北京都市区人口—就业空间分布演化,揭示在快速城市化和城市增长背景下,北京都市区空间结构特征及发展趋势。研究发现,北京都市区人口和就业分布都呈现多中心空间结构。20 世纪80 年代以来,随着人口郊区化,北京都市区人口次中心数量不断增加,并由近郊向远郊扩展,人口分布呈现明显的分散化和多中心化趋势,但人口分散的空间范围还比较有限。与人口的分散化趋势不同,2004-2008 年,北京都市区就业仍呈现向心集聚的趋势,造成远郊就业次中心的影响不断被弱化,都市区空间结构的多中心性有所降低。这说明北京都市区的单中心或强中心结构可能并未从根本上改变,且人口的分散化和就业的向心集聚导致宏观面上人口—就业的空间失衡。北京都市区多中心空间结构的形成,需要强化郊区次中心的集聚能力,同时注重人口—就业的平衡布局,这是未来北京都市区空间结构调整的重点。

Sun T S, Wang L L, Li G P.

Distributions of population and employment and evolution of spatial structures in the Beijing metropolitan area

[J]. Acta Geographica Sinica, 2012, 67(6):829-840.

DOI:10.11821/xb201206010      [本文引用: 3]

This study aims to examine the characteristics and changes of the spatial structure in the Beijing Metropolitan Area with the rapid urban growth and decentralization, through analyzing the spatial distributions of urban population and employment. To demonstrate the spatial evolution of population and employment distributions in the Beijing Metropolitan Area, we apply the nonparametric analysis in this study. Our study finds that the significant population and employment subcenters in the suburbs of the Beijing Metropolitan Area, characterized by the polycentric urban spatial structure. Since the 1980s, with the suburbanization of population, the number of population subcenters has increased in the Beijing Metropolitan Area, and the distribution of population subcenters has expanded from the inner suburbs to the outer suburbs. The overall trend toward the decentralization and polycentrification of population is evident, whereas the spatial extent of the decentralization of population is limited in the Beijing Metropolitan Area. Contrary to the decentralization of population, our study finds that the centralization of employment in the Beijing Metropolitan Area from 2004 to 2008 has led to the weakening influences of the outer suburban employment subcenters as well as the decline of the polycentricity of the spatial structure. This implies the spatial pattern of the Beijing Metropolitan Area may still be highly centralized, and the nature of the monocentric urban spatial structure may not be fundamentally changed. Meanwhile, the decentralization of population and the centralization of employment may lead to the overall jobs-housing imbalance. Therefore, to form the polycentric spatial structure, it is necessary to reinforce the agglomeration economies of suburban subcenters and improve the overall jobs-housing balance in the Beijing Metropolitan Area.

Deng Y, Liu J, Liu Y, et al.

Detecting urban polycentric structure from POI data

[J]. ISPRS International Journal of Geo-Information, 2019, 8(6):283.

DOI:10.3390/ijgi8060283      URL     [本文引用: 2]

It is meaningful to analyze urban spatial structure by identifying urban subcenters, and many methods of doing so have been proposed in the published literature. Although these methods are widely applied, they exhibit obvious shortcomings that limit their further application. Therefore, it is of great value to propose a new urban subcenter identification method that can overcome these shortcomings. In this paper, we propose the density contour tree (DCT) method for detecting urban polycentric structures and their spatial distributions. Conceptually, this method is based on an analogy between urban spatial structure and terrain. The point-of-interest (POI) density is visualized as a continuous mathematical surface representing the urban terrain. Peaks represent the regions of the most frequent human activity, valleys represent regions with small population densities in the city, and slopes represent spatial changes in urban land-use intensity. Using this method, we have detected the urban “polycentric” structure of Beijing and determined the corresponding spatial relationships. In addition, several important properties of the urban centers have been identified. For example, Beijing has a typical urban polycentric structure with an urban center area accounting for 5.9% of the total urban area, and most of the urban centers in Beijing serve comprehensive functions. In general, the method and the results can serve as references for the later research on analyzing urban structure.

Li J, Long Y, Dang A.

Live-work-play centers of Chinese cities:Identification and temporal evolution with emerging data

[J]. Computers Environment and Urban Systems, 2018, 71(1):58-66.

DOI:10.1016/j.compenvurbsys.2018.04.002      URL     [本文引用: 1]

Liu X, Yan X, Wang W, et al.

Characterizing the polycentric spatial structure of Beijing metropolitan region using carpooling big data

[J]. Cities, 2021, 109(1):103040.

DOI:10.1016/j.cities.2020.103040      URL     [本文引用: 1]

Long Y, Song Y, Chen L.

Identifying subcenters with a nonparametric method and ubiquitous point-of-interest data:A case study of 284 Chinese cities

[J]. Environment and Planning B Urban Analytics and City Science, 2022, 49(1):58-75.

DOI:10.1177/2399808321996705      URL     [本文引用: 2]

Urban spatial structure, which is primarily defined as the spatial distribution of employment and residences, has been of lasting interest to urban economists, geographers, and planners for good reason. This paper proposes a nonparametric method that combines the Jenks natural break method and the Moran’s I to identify a city’s polycentric structure using point-of-interest density. Specifically, a polycentric city consists of one main center and at least one subcenter. A qualified (sub)center should have a significantly higher density of human activity than its immediate surroundings (locally high) and a relatively higher density than all the other subareas in the city (globally high). Treating Chinese cities as the subject, we ultimately identified 70 cities with polycentric structures from 284 prefecture-level cities in China. In addition, regression analyses were conducted to reveal the predictors of polycentricity among the subjects. The regression results indicate that the total population, GDP, average wage, and urban land area of a city all significantly predict polycentricity. As a whole, this paper provides an alternative and transferrable method for identifying main centers and subcenters across cities and to reveal common predictors of polycentricity. The proposed method avoids some of the potential problems in the conventional approach, such as the arbitrariness of thres hold. setting and sensitivity to spatial scales. It can also be replicated rather conveniently, as its input data, such as point-of-interest data, are widely available to the public and the data’s validity can be efficiently checked by field trips or other traditional data sources, such as land-use maps or censuses.

Lyu Y, Lan Z, Kan C, et al.

Polycentric urban development and its determinants in China:A geospatial big data perspective

[J]. Geographical Analysis, 2020, 53(3):520-542.

DOI:10.1111/gean.v53.3      URL     [本文引用: 2]

Liu X, Wang J.

The geography of Weibo

[J]. Environment and Planning A, 2015, 47(6):1231-1234.

DOI:10.1177/0308518X15594912      URL     [本文引用: 1]

Ma T, Yin Z, Zhou A.

Delineating spatial patterns in human settlements using VIIRS nighttime light data:A watershed-based partition approach

[J]. Remote Sensing, 2018, 10(3):465.

DOI:10.3390/rs10030465      URL     [本文引用: 2]

Muniz I, Garcia-Lopez M A, Galindo A.

The effect of employment sub-centres on population density in Barcelona

[J]. Urban Studies, 2008, 45(3):627-649.

DOI:10.1177/0042098007087338      URL     [本文引用: 1]

The polycentric models of the new urban economics (NUE) predict that population density decreases while increasing the distance to employment centres. In contrast with this, some studies have calculated non-significant gradients or even positive ones, which appear to threaten seriously the usefulness of these theoretical models. Does this mean that this theoretical framework should be given up in order to understand the decision-making processes of the actors in a polycentric city and their cumulative effects on urban structure? Or, rather, is it a matter of overcoming problems with the appropriate estimating techniques? This study has tested the effect of decentralised and integrated sub-centres in the Barcelona metropolitan region on population density in 1991 and 2001. From the preliminary results, it is clear that population density increases with distance in a considerable number of the sub-centres that have sprung up as employment has decentralised. It has been detected that this result is due not so much to the higher value of more distant residential land compared with that nearer the employment sub-centres, but to deficiencies in the econometric model used. The problem is that the sub-centres belonging to this group are very close together. Once this is resolved, it is demonstrated that, although distance has less effect on decentralised sub-centres than integrated ones, in both cases the effect is negative; that is, when distance increases, population density is reduced. Therefore, the results obtained are not clearly contrary to the predictions of the theoretical models.

Giuliano G, Small K A.

Subcenters in the Los Angeles region

[J]. University of California Transportation Center Working Papers, 1990, 21(2):163-182.

[本文引用: 1]

Baumont C, Ertur C, Gallo J L.

Spatial analysis of employment and population density:The case of the agglomeration of Dijon 1999

[J]. Geographical Analysis, 2004, 36(2):146-176.

DOI:10.1111/gean.2004.36.issue-2      URL     [本文引用: 1]

Guillain R, Gallo J L, Baumont C, et al.

Agglomeration and dispersion of economic activities in Paris and its surroundings:An exploratory spatial data analysis

[J]. Environment and Planning B:Urban Analytics and City Science, 2007, 37(6):961-981.

[本文引用: 1]

Vasanen A.

Functional polycentricity:Examining metropolitan spatial structure through the connectivity of urban sub-centres

[J]. Urban Studies, 2012, 49(16):3627-3644.

DOI:10.1177/0042098012447000      URL     [本文引用: 1]

A shift from monocentric cities to increasingly polycentric urban regions has been widely recognised in recent research literature. Although polycentricity in general refers to the existence of several adjacent centres within the same area, many studies have emphasised that functional linkages between the centres of an urban system are also an essential part of polycentricity. Despite the increasing number of studies concerning functional polycentricity, research on the subject is still in a development phase. In this paper, a new approach to measure functional polycentricity is presented, in which functional polycentricity is approached through the connectivity of individual centres to the whole urban system. The paper illustrates the potential of the method with empirical case studies addressing the urban spatial structures of three functional urban regions in Finland. In the case studies, detailed commuting data are used in order to measure the degree of functional polycentricity.

Asikhia M O, Nkeki N F.

Polycentric employment growth and the commuting behaviour in Benin metropolitan region,Nigeria

[J]. Journal of Geography and Geology, 2013, 5(2):1-17.

[本文引用: 1]

Mcdonald J, Prather P.

Suburban employment centres:The case of Chicago

[J]. Urban Studies, 1994, 31(2):201-218.

DOI:10.1080/00420989420080201      URL     [本文引用: 1]

This paper uses data from the journey to work portion of the 1980 Census to estimate a polycentric model of employment density for the Chicago urbanised area. Distance to the Chicago central business district exerted a strong effect on employment density, but density was also influenced by proximity to three suburban employment centres. Some 27 per cent of total employment growth in metropolitan Chicago over the next decade was concentrated in these three subcentres.

McMillen D P.

Nonparametric employment subcenter identification

[J]. Journal of Urban economics, 2001, 50(3):448-473.

DOI:10.1006/juec.2001.2228      URL     [本文引用: 8]

Redfearn C L.

The topography of metropolitan employment:Identifying centers of employment in a polycentric urban area

[J]. Journal of Urban Economics, 2007, 61(3):519-541.

DOI:10.1016/j.jue.2006.08.009      URL     [本文引用: 1]

Lyu Y, Zhou L, Yao G, et al.

Detecting the true urban polycentric pattern of Chinese cities in morphological dimensions:A multiscale analysis based on geospatial big data

[J]. Cities, 2021, 116(17):103298.

DOI:10.1016/j.cities.2021.103298      URL     [本文引用: 1]

Hajrasouliha A H, Hamidi S.

The typology of the American metropo-lis:Monocentricity,polycentricity,or generalized dispersion

[J]. Urban Geography, 2016, 38(3):1-25.

[本文引用: 1]

Lv Y, Zheng X, Zhou L, et al.

Decentralization and polycentricity:Spatial changes of employment in Beijing metropolitan area,China

[J]. Sustainability, 2017, 9(10):1880.

DOI:10.3390/su9101880      URL     [本文引用: 1]

Hu L, Sun T, Wang L.

Evolving urban spatial structure and commuting patterns:A case study of Beijing,China

[J]. Transportation Research Part D Transport and Environment, 2018, 59:11-22.

DOI:10.1016/j.trd.2017.12.007      URL     [本文引用: 1]

Lee B.

“Edge” or “edgeless” cities? Urban spatial structure in U.S.Metropolitan areas,1980 to 2000

[J]. Journal of Regional Science, 2007, 47(3):479-515.

DOI:10.1111/jors.2007.47.issue-3      URL     [本文引用: 1]

Krehl A.

Urban subcentres in German city regions:Identification,understanding,comparison

[J]. Papers in Regional Science, 2016, 2(1):289-307.

[本文引用: 1]

Amindarbari R, Sevtsuk A.

Measuring growth and change in metropolitan form

[J]. Sciences, 2012, 104(17):7301-7306.

[本文引用: 1]

魏旭红, 孙斌栋.

我国大都市区就业次中心的形成机制——上海研究及与北京比较

[J]. 城市规划学刊, 2014(5):65-71.

[本文引用: 1]

Wei X H, Sun B D.

Formation mechanism of employment subcenters in metropolitan areas:The case of Shanghai in comparison to Beijing

[J]. Urban Planning Forum, 2014(5):65-71.

[本文引用: 1]

蒋丽, 吴缚龙.

2000—2010年广州外来人口空间分布变动与对多中心城市空间结构影响研究

[J]. 现代城市研究, 2014(5):15-21.

[本文引用: 1]

Jiang L, Wu F L.

Guangzhou non-registered population spatial distribution and impact on poloycentricity spatial structure

[J]. Modern Urban Research, 2014(5):15-21.

[本文引用: 1]

曾海宏, 孟晓晨, 李贵才.

深圳市就业空间结构及其演变(2001—2004)

[J]. 人文地理, 2010, 25(3):34-40.

[本文引用: 1]

Zeng H H, Meng X C, Li G C.

Spatial structure of employment and its evolution in Shenzhen City:2001—2004

[J]. Human Geography, 2010, 25(3):34-40.

[本文引用: 1]

Pereira R H M, Nadalin V, Monasterio L, et al.

Urban centrality:A simple index

[J]. Geographical Analysis, 2013, 45(1):77-89.

DOI:10.1111/gean.12002      URL     [本文引用: 4]

Garcia-López M-À, Muñiz I.

Employment decentralisation:Polycentricity or scatteration? The case of Barcelona

[J]. Urban Studies, 2010, 47(14):3035-3056.

DOI:10.1177/0042098009360229      URL     [本文引用: 1]

At the present time, most large cities in the world are polycentric and, at the same time, they are undergoing processes of employment decentralisation and deconcentration. It has been argued that polycentricity is just an intermediate stage between monocentricity and a more unstructured, chaotic and amorphous location model, scatteration. For the case of the polycentric Barcelona, the aims of this study are to test: whether its employment is moving from polycentricity to scatteration; and, whether its employment location model is increasingly random and unstructured. The results show that, in spite of the decentralisation and deconcentration processes, employment concentrated in centres still represents a significant percentage of total employment and new sub-centres have emerged in the periphery. What is more, the results also show an increasing influence of employment sub-centres on employment location and density conditions. As a result, polycentricity has been reinforced.

Nam K, Kim B H S.

The effect of spatial structure and dynamic externalities on local growth in Seoul metropolitan area

[J]. Urban Policy and Research, 2016, 35(2):1-15.

DOI:10.1080/08111146.2017.1283751      URL     [本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发