自然资源遥感, 2023, 35(3): 160-169 doi: 10.6046/zrzyyg.2022173

技术方法

基于ICESat2的西南山地森林LAI遥感估测模型优化

席磊,, 舒清态,, 孙杨, 黄金君, 宋涵玥

西南林业大学林学院,昆明 650224

Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China

XI Lei,, SHU Qingtai,, SUN Yang, HUANG Jinjun, SONG Hanyue

College of Forestry, Southwest Forestry University, Kunming 650224, China

通讯作者: 舒清态(1970-),男,副教授,硕士生导师,研究方向为林业3S技术应用。Email:shuqt@163.com

责任编辑: 李瑜

收稿日期: 2022-04-28   修回日期: 2022-09-19  

基金资助: 国家自然科学基金项目“生态脆弱区典型森林生态系统生化参数高光谱遥感反演关键技术研究”(31860205)
“基于LiDAR和MERSI数据滇西北乔木生物量反演关键技术研究”(31460194)
云南省教育厅科学研究基金项目“基于深度学习的多源遥感协同的森林生物量估测研究”(2021Y249)

Received: 2022-04-28   Revised: 2022-09-19  

作者简介 About authors

席 磊(1997-),男,硕士研究生,研究方向为数字林业与森林资源管理。Email: swfuxilei@163.com

摘要

叶面积指数(leaf area index,LAI)是森林生态系统重要参数,如何以较小成本提升区域尺度的山地森林LAI的遥感估测精度,对于精确掌握森林LAI的情况和进一步了解森林生态系统有重要意义。本研究以星载激光雷达ICESAT-2/ATLAS为主要信息源,以西南山地香格里拉市为研究区,基于随机森林回归(random forest,RF)遥感估测模型,结合地面51块LAI实测样地数据,在前期进行RF超参数优化基础上,采用决定系数、均方根误差、绝对平均误差和中位数绝对误差作为模型精度评价指标,对估测效果进行分析。结果表明: 使用随机表面查找算法进行RF回归模型的超参数优化,能明显提升模型估测LAI精度。提取出的地面光斑特征参数在山地森林LAI估测中有较高的贡献度和极佳的效果,可用于区域尺度的山地森林物理结构参数LAI的估测。同时,利用随机表面查找算法优化后的RF回归模型,估测精度更高,估测结果与研究区森林分布现状吻合,具有一定普适性。最后,研究确定了使用ICESat-2/ATLAS数据产品估测LAI是可行的,能为星载激光雷达估测中大范围的LAI提供一定的参考。

关键词: ICESat-2/ATLAS; 叶面积指数; 超参数优化; 随机森林; 香格里拉

Abstract

The leaf area index (LAI) is a critical parameter for the forest ecosystem. Improving the remote sensing estimation accuracy of the regional LAI of mountain forests at a low cost is of great significance for accurately determining the LAIs of forests and for further understanding the forest ecosystem. With spaceborne LiDAR ICESat-2/ATLAS data as a primary information source, this study investigated Shangri-La City in mountainous areas in southwestern China. Based on the remote sensing estimation model using random forest (RF) regression, RF hyperparameter optimization, and the data of 51 measured sample plots of LAI, this study analyzed the estimation effects of the model using accuracy evaluation indicators such as coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and median absolute error (MedAE). The results are as follows: The hyperparameter optimization of the RF regression model using a random surface search algorithm can significantly improve the estimation accuracy of LAI. The extracted characteristic parameters of ground spots showed high contribution and excellent effects in the LAI estimation of mountain forests. Therefore, they can be applied to the estimation of regional LAI of mountain forests. The RF regression model optimized using the random surface search algorithm yielded higher estimation accuracy. The estimation results were consistent with the forest distribution in the study area, indicating certain generality. Finally, this study determined that it is feasible to employ ICESat-2/ATLAS data products for LAI estimation, providing a reference for medium- to large-scale LAI estimation based on spaceborne LiDAR.

Keywords: ICESat-2/ATLAS; leaf area index; hyperparameter optimization; random forest; Shangri-La

PDF (4456KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169 doi:10.6046/zrzyyg.2022173

XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Land & Resources, 2023, 35(3): 160-169 doi:10.6046/zrzyyg.2022173

0 引言

叶面积指数(leaf area index,LAI)是森林生态系统中生物地球化学循环的重要中间参数,如光合作用、呼吸、蒸腾和碳循环的关键参数[1]。传统的LAI通常采用地面直接或间接测量技术,只能获取小尺度的森林LAI,如全植物体采样和光学测定的方法[2]。与传统地面调查数据相比,遥感技术在获取区域尺度上森林资源信息时具有无可比拟的优势,越来越多的遥感数据被用于森林资源监测[3]。传统光学遥感只能获取森林冠层定性信息,存在很多不确定性,降低了在区域尺度下的森林LAI估测精度。已有研究表明,当LAI值超过4.0时,光学遥感易发生饱和现象,导致LAI估计值比实际值低[2]。激光雷达(light detection and ranging,LiDAR)是当前发展迅速的主动遥感技术之一,已被证实在森林高度和垂直结构的探测上具有很强的应用能力。但目前而言,机载激光雷达只能获取小尺度极高的反演精度,但数据量大,费用昂贵[4]; 星载激光雷达可以提供覆盖全球的激光光斑数据,通过协同光学数据或空间插值方法,可获取区域尺度高精度LAI[5]

用于区域尺度的森林LAI监测的典型星载LiDAR主要有美国NASA发射的ICESat-1/GLAS和ICESat-2/ATLAS。ICESat-1搭载地球科学激光高度计系统(GLAS)收集的数据已成功用于检索森林LAI [6-7]。然而,GLAS在进行区域尺度LAI反演时,由于光斑为椭圆形,不利于地面LAI样地调查; 其次,GLAS采样间隔约为170 m,空间分布较稀疏[8-10],光斑直径约70 m,回波信号容易受地形影响[11],降低了LAI估测精度。ICESat-1/GLAS于2009年10月11日退役后,美国国家航空航天局又于2018年9月成功发射了ICESat-2/ATLAS。与GLAS相比,ATLAS使用多光束的光子计数激光雷达系统代替GLAS使用的全波形激光雷达系统,该系统采用低能量消耗延长激光寿命和高脉冲频率,以获得比GLAS更密集的采样间隔和更小的光斑足印,密集的足印光斑能降低山区地形对激光雷达数据的影响[12-13]。同时由于ATLAS光斑小,一定程度上降低了地形的影响。Neuenschwander等[14]对ICESat-2垂直采样误差有关的性能特征和潜在的不确定性进行了探讨,其中包括在植被茂密的生境内感知高度值的误差和测量精度,结果显示地形误差为1.93 m和2.52 m、冠层误差从0.28~1.25 m之间不等。Narine等[15]在2019年使用ATL08数据产品对芬兰的一个植被覆盖区域的ICESat-2断面进行了水平和垂直方向的精度检验,得到了水平方向偏差在5 m内,同一横断面下地形和冠层高度的垂直均方根误差RMSE分别为0.85 m和3.2 m的结论。在区域尺度上,Zhang等[16]使用ATLAS数据进行了LAI的检索,基于GORT理论估计ICESat-2得到亚马孙LAI: R=0.693,RMSE=2.545,并使用MODIS和Sentinel-2生成的LAI进行检验,但其检验方法及精度有待进一步提升。综上,以地面实测ATLAS光斑LAI为样本数据,进行区域尺度ATLAS光斑足印LAI估测,并提升算法估测精度的研究鲜有报道。

因此,针对新一代ICESat-2/ATLAS光斑数据特点,以西南典型山地香格里拉市为研究区,基于随机森林超参数优化算法,以较小的地面调查样本,实现区域尺度上LAI遥感估测。主要目标如下: ①基于随机森林进行特征优选,提取经过光子去噪、光子分类算法处理后的ATLAS光斑参数建模指标; ②基于超参数优化后的随机森林算法,提升ICESat-2/ATLAS光斑足印内LAI估测精度,并进行分析。

1 研究区概况及数据源

1.1 研究区概况

以云南省西北部具有山地地形的香格里拉市为研究区,经纬度在E99°08'02″~100°21'15″,N26°49'07″~28°54'38″之间,如图1所示。研究区属亚热带常绿阔叶林植被区向高寒植被区过渡地带。气候易受海拔影响,昼夜温差大,海拔区间为2 993~3 947 m[17]。按《云南植被》划分标准,全域共有10种植被类型,主要类型有温凉性针叶林、寒温性针叶林、灌丛和草甸等,主要树种有云冷杉、高山松和高山栎等。

图1

图1   研究区位置及样地示意图

Fig.1   Location and plot of the study area


1.2 ICESat-2卫星数据

ICESat-2卫星轨道为3对6束,激光频率为10 kHz,可得到直径约17 m、沿轨间距0.7 m的多波束光子点云数据。轨道垂直间距约为3 km,强弱光束垂直间距约为90 m,卫星重返周期为91 d[18-19]。该卫星共有21种数据产品,分为3大类,产品命名为ATL01~ATL21。研究使用数据产品为: ATL03数据产品(global geolocated photon data)和ATL08数据产品(land and vegetation height)[20]

ATL03产品中包括所有光子事件的时间、经纬度和高度等地理空间位置信息。其中各光子均以索引的方法按层次性结构串联起来,ATLAS中索引类型主要有2种: 一是依据光子传输时间进行编号,二是沿轨按距离分段。即按20 m划分,每个区段用唯一的7位数编号作为区段号[21-23],区段号被存储在segment_id中。ATL08产品是进行分区段后的ATL03产品[24],主要是使用差分、回归高斯自适应最近邻(differential, regressive, and Gaussian adaptive nearest neighbor,DRAGANN)算法[19,23,25]完成噪声去除,再进行光子点云分类,最后分为噪声光子、地面光子、冠层光子和冠层顶光子4大类。分类标识以区段的形式记录在classed_pc_flag中。研究选取香格里拉市域内2020年1月—2021年6月之间的所有ATL03和ATL08数据产品,2类数据产品均为118条数据、354条轨道、708条光子轨道波束。研究数据均可在ICESat-2官网下载(https://nsidc.org/data/icesat-2)。

2 研究方法

2.1 基于光斑足印的样地设计

样地设计尽量覆盖研究区内主要植被类型,采集样地54块,去除差异性较大样地3块,最终有效样地为51块。调查样地是与ATLAS传感器发射的光斑大小一致的样圆,样圆直径17 m。样圆中心坐标为ATLAS数据产品中光斑中心点的坐标,为保证坐标复位一致,调查使用千寻星矩SR3(Pro版)差分RTK进行点位放样,采集时保证设备为固定解状态,5次连续采集后取均值,所有样地中心点坐标与光斑中心点坐标仪器误差均小于0.02 m。

2.2 样圆LAI测定设计

研究选择使用基于LAI-2000的平台开发LAI-2200测定仪来测定样圆内有效LAI值,该仪器主要利用鱼眼光学传感器。LAI-2200传感器利用5个不同的天顶角方向来检测植物冠层下的光照强度变化,测量时最理想的是云层均匀分布的阴天。测定模式为“ABBBB”模式,即测量一个天空空白,对比在林下测量4个值。在每个样圆的东西南北测量4个B值和中心点1个A值,取最后的均值来代表该区域的有效LAI[26-27]。最终计算得到的51块样地的LAI统计信息汇总如表1所示,其中坡度[0,10]°样地22块,(10,20]°样地15块,大于20°的样地14块。

表1   样地LAI统计信息汇总

Tab.1  Summary of LAI statistics for sample sites

样地
数量
均值均值标
准差
标准差最大值最小值中位数
510.468 10.038 80.265 80.967 00.012 10.509 0

新窗口打开| 下载CSV


2.3 研究路线

使用ICESat-2/ATLAS估测光斑足印内LAI主要分为3个部分,即光子点云去噪算法、光子分类算法和LAI估测模型。具体步骤如图2所示。

图2

图2   研究路线

Fig.2   Study flowcharts


2.4 光子点云去噪算法

光子计数雷达比其他激光雷达对光子信号感知更敏感,ATLAS在获取地面和树冠等目标的反射光子时,还接收到了太阳背景或大气散射引起的噪声光子[4,28]。因此,应该先进行噪声去除。以往的研究基于信号光子的光子密度更大、噪声光子分布具有随机性的特点进行了假设,开发了多种去噪算法。当前去噪算法大致有3种[29-30]: 基于图像处理、基于局部统计和基于密度聚类的算法。分析3种算法的优缺点后,本文使用基于密度聚类算法(different densities-based spatial clustering of applications with noise,DDBSCAN)[31]和基于局部统计算法(K-nearest neighbors-based,KNNB)[32-33]分别去除高背景噪声的噪声光子和低背景噪声水平中信号光子周围的少量噪声光子。该综合去噪算法可获得极佳的去噪效果。同时,在DDBSCAN算法中,还计算了所有搜索方向的光子密度,并使用最大密度差替代密度作为最终度量参数,以此降低光子密度不一致对算法性能产生的影响。算法流程如图3所示。

图3

图3   噪声消除算法流程

Fig.3   Flow chart of noise elimination algorithm


2.4.1 DDBSCAN算法

综合去噪算法首先是DDBSCAN算法。主要步骤为: 先计算每个光子所有搜索方向的光子密度,定义为每个光子椭圆邻域中的光子数量; 设置搜索椭圆的方向间隔为5[34-35]; 椭圆的长轴和短轴由沿轨距离范围与高程范围的比率进行设定[29]。其次,得到每个光子的最大密度差。最后,根据密度差频率直方图确定阈值(阈值确定详见文献[34])。如果密度差小于阈值,该光子视为噪声去除。

2.4.2 KNNB噪声滤波算法

综合去噪算法第二步是KNNB算法,主要步骤为: 首先计算每个光子到其k近邻的总距离。k代表距离每个点最近的点数,它是计算总距离的重要参数。该步骤中未选择原始算法中的50,而是降低了10倍,使用k=5的原因是DDBSCAN算法进行了第一重去噪,得到了背景噪声较小的数据,对于背景噪声水平较低的数据,k=50并不适用。本研究以5为间隔,在1~50之间进行多次试验分析,确定最佳值k=5,结果与Zhang等[16]的研究保持一致。最后根据文献[36]去除总距离大于阈值的噪声光子。对于残留的少量孤立噪声光子,则使用目视解译去除。

2.5 光子分类算法

进行LAI估测前,必须将去噪滤波后的信号光子分类为地面和冠层光子。以往研究确定了几种分类算法,Axelsson[37]提出的渐进式三角不规则网络加密(PTD)方法,但该方法不适合地形复杂区域。为了提高地面光子提取精度,本研究使用了Nie等[36]提出的修正PTD方法,该方法对于海拔落差较大的区域内的地面光子识别精度较高。算法流程如图4

图4

图4   光子分类算法流程

Fig.4   Flow chart of photon classification algorithm


根据Zhang等[16]、Nie等[29]和Zhang等[38]的研究结论,研究对原始算法中的部分参数进行了改正,通过选择距离初始三角网最远的点下方高程最低的点,来保证地面点不被误分类为冠层点。算法关键步骤如下:

1)参数简述[29,34,36,39]。主要包含4个参数,窗口大小(由最大非圆形特征大小确定)预设为200 m; Di为未分类光子到2个初始相邻种子地面光子之间的距离; At为连接未分类光子及其种子地面光子的线与地面区段线之间的角度; Ds为从未分类光子到地面曲面的距离。

2)初始种子地面光子选择和区段线生成。选择每个窗口中高程最低的光子作为初始种子地面光子,然后连接初始种子地面光子以生成初始区段线。剩余光子均标记为未分类光子。

3)地面光子的迭代致密化。对地面曲线进行2次迭代加密,提高地面曲线精度,便于地面和植被光子的分离。具体流程为,计算每个未分类光子的距离Di后,若Di的最大值大于阈值,则从未分类光子中提取高程低于Di最大值的光子作为地面光子,以保证提取的光子中无冠层光子。同时,为确定最佳地面区段线,设置以10为间隔,测试10~50之间的数值,阈值为20,多次迭代调用自身,直到无新的种子地面光子为止。最终结果与Zhang等[16]的研究保持一致。生成初始区段线后,采用Douglas-Peucker算法生成改进的区段线。

4)地面和植被光子的区分。为了提取最终地面光子,使用三次样条插值拟合地面光子并建立地面曲面。仅有Ds低于1 m的光子被识别为地面光子,其余均为植被光子[16,34,39]

5)最终,研究区ATL03的有效光子数量达到了千万级以上,根据ATL08进行100 m的抽稀,得到研究区内有效光斑数量为94 086个,再与最新的林地范围叠加分析,得到有效林地光斑数量为74 873个,非林地有效光斑数量为19 213个,具体光斑分布如图5所示。

图5

图5   研究区有效光斑示意图

Fig.5   Effective spot diagram of the study area


2.6 随机森林算法超参数优化估测LAI

随机森林通过自助采样法,将提供的样本数据集经过随机采样后,再基于每个采样集进行训练构建决策树; 在结点处,先从该结点的属性集合中随机选择一个包含多个属性的子集,然后再从这个子集中选择最优的一个属性进行划分[38,40]。研究使用Python语言在Pycharm中调用scikit-learn库[41]实现超参数确定,基于51块样地数据使用随机表面查找算法抽取一定数量的参数组合,进行多折交叉验证,以确定模型最优超参数。研究进行超参数优化的参数有(n_estimators,min_samples_split,min_samples_leaf,max_features,max_depth,bootstrap)。各参数含义如表2所示。

表2   随机森林算法参数说明

Tab.2  Description of the parameters of the random forest algorithm

参数名描述类型
n_estimators决策树的数量整数型
min_samples_split节点可分的最小样本数整数或浮点型
min_samples_leaf叶子节点含有的最少样本整数或浮点型
max_features构建决策树最优模型时考虑的最大特征数整数或浮点型
max_depth决策树最大深度整数型
bootstrap样本集是否放回抽样布尔型

新窗口打开| 下载CSV


2.7 精度评价标准

为探究随机森林算法超参数优化后估测LAI能力,以及拟合估测模型的精度,研究结果分别对随机森林默认参数、超参数优化后模型的决定系数R2、绝对平均误差MAE、均方误差MSE、均方根误差RMSE和中位数绝对误差MedAE进行定量评价[21,42]。决定系数指模型拟合优度,是表示回归直线对观测值的拟合程度,数值为[0,1]之间,数值越接近于1,代表模型拟合效果越好。绝对平均误差是所有单个观测值与算术平均值的偏差的绝对值的平均,数值越小,误差越小。均方误差是预测数据和原始数据对应点误差的平方和的均值,数值越小,误差越小。均方根误差也叫回归系统的拟合标准差,是均方误差的平方根,数值越小,误差越小。中位数绝对误差非常适合含有离群点的数据集,属于评价模型好坏的指标之一,数值越小、误差越小,则模型越好[41]。各项精度评价指标公式分别为:

R2=1-i=1n(yi-y︿i)2i=1n(yi-y-)2
RMSE=i=1n(yi-y︿i)2n-1 
MAE=1ni=1n(yi-y︿i)
MedAE(y,y︿)=median(y1-y︿1,,yn-y︿n)

式中: yi为实际值; y︿i为估计值; y-为估计值均值; n为样本量。

3 结果与分析

3.1 随机森林算法中默认参数估测LAI

对51块现地测量LAI的有效样地进行随机森林模型拟合,构建默认参数设置的随机森林模型。同时进行特征参数重要性评价[41],参与拟合的参数共计48个,所有参数均有一定贡献率,48个参数参与模型构建的贡献率百分比如图6所示。总体贡献度阈值绘制区间为(0,20],其中最高贡献率的参数为photon_rate_can(19.38%),最低贡献率的参数为h_min_canopy_abs(0.18%),中位数贡献率为1.41%,建模中贡献率排前十的参数及含义见表3

图6

图6   建模参数重要性贡献比例

Fig.6   Proportion of importance contribution of modelling parameters


表3   未优化随机森林模型建模参数贡献率统计

Tab.3  Statistics on the contribution of modeling parameters of the unoptimized random forest model

参数名描述数值/%
photon_rate_can计算后每100 m段内冠层光子的光子率19.38
n_toc_photons区段内冠层顶部光子数7.81
n_ca_photons区段内冠层光子数5.66
asr表观反射率4.20
h_median_canopy区段内个体相对冠层高的中位数3.62
solar_azimuth太阳方位角3.34
solar_elevation太阳高度角2.92
toc_roughness区段内冠层顶光子相对高度的标准偏差2.73
h_min_canopy区段内冠层高度的最小值2.56
dem_h地理定位点处的最佳可用DEM值2.55

新窗口打开| 下载CSV


通过对ICESat-2/ATLAS提取的所有参数进行随机森林建模,真实值和预测值情况如图7所示,各项评价指标分别为: R2=0.872 7,MAE=0.075 5,MSE=0.008 8,RMSE=0.093 8,MedAE=0.061 4,结果表明,提取的参数在使用随机森林算法建模估计LAI中呈现很好的效果。

图7

图7   随机森林模型拟合点线图

Fig.7   Point line diagram of the random forest model fit


3.2 随机森林超参数优化后估测LAI

针对使用随机森林算法默认参数拟合的估测模型,研究又对精度的进一步提升做出了思考。最终选择使用随机表面查找算法对随机森林算法进行超参数优化[40-41,43]。抽取50 000组参数组合,进行10折交叉验证,最终确定模型最优超参数为('n_estimators': 1 340, 'min_samples_split': 2, 'min_samples_leaf': 2, 'max_features': 'auto', 'max_depth': None, 'bootstrap': TRUE)。使用得到的超参数再次对51块现地测量LAI进行随机森林模型拟合,构建基于超参数优化后的随机森林模型,同时进行特征参数重要性评价,参与模型拟合的参数共计48个,去除贡献率为0的参数h_te_mode和h_dif_ref,剩余46个参数的贡献率如图8所示。总体贡献度绘制区间为(0,35],其中最高贡献率的参数为photon_rate_can(32.22%),最低的参数为h_median_canopy(0.01%),中位数贡献率为0.23%。优化后建模中贡献率排前十的参数及含义见表4所示。

图8

图8   优化后建模参数重要性贡献比例

Fig.8   Proportion of importance contribution of modelling parameters after optimization


表4   超参数优化后随机森林模型建模参数贡献率统计

Tab.4  Statistics on the contribution of modeling parameters to the random forest model after hyperparameter optimization

参数名描述数值/%
photon_rate_can计算后每100 m段内冠层光子的光子率32.22
toc_roughness区段内冠层顶光子相对高度的标准偏差13.39
asr表观反射率6.41
snr定位光子的信噪比6.19
h_te_median在WGS84椭球体上方的光子高度的中值(分类为地形区段内)4.86
h_te_max在WGS84椭球体上方的光子高度的最大值(分类为地形区段内)4.73
h_te_min在WGS84椭球体上方的光子高度的最小值(分类为地形区段内)4.61
canopy_openness区段内冠层光子与段内所有光子的标准差(可推断冠层开放度)4.41
h_te_rh2525%分位数高度处的地形高度值4.25
segment_landcoverIGBP地表覆盖类型4.17

新窗口打开| 下载CSV


使用超参数优化后的随机森林模型对ICESat-2/ATLAS提取的所有参数进行建模,对比真实值和预测值的效果如图9所示,各项评价指标分别为: R2=0.907 1,MAE=0.056 6,MSE=0.006 4,RMSE=0.080 1,MedAE=0.042 0。对比未优化的模型可得出: 超参数优化后的随机森林模型估测LAI优于未优化的模型。总体呈现更高的R2和更低的RMSE,详见优化前后散点图(图10)。

图9

图9   优化后随机森林模型拟合点线图

Fig.9   Point line diagram of the random forest model fit after optimization


图10

图10   随机森林模型拟合散点图

Fig.10   Scatterplot of random forest model fit


3.3 超参数优化后拟合LAI制图

使用超参数优化后的模型对研究区内74 873个林地有效光斑进行估测,得到了所有光斑对应的LAI预测值,进行区域制图后,得到了研究区内所有光斑LAI的空间分布如图11所示。进行空间制图分级后,研究区LAI最大值为0.954,最小值为0.016,均值为0.525。且从图11中可以看出整个研究区内植被覆盖总体较高,LAI较低区域主要分布在研究区边缘,多为河流或常年积雪区域周边; LAI较高区域总体呈现西北东南贯穿的趋势,主要因为中部地区人工林种植比例逐年提高,同时东北地区为普达措国家森林公园分布区域[44],这也从侧面印证了LAI预测结果具有一定可靠性。

图11

图11   研究区内ICESat-2光斑LAI空间分布

Fig.11   Spatial distribution of ICESat-2 spot LAI in the study area


4 讨论

4.1 超参数优化对模型精度和参数筛选的作用

研究使用的超参数优化可以提高模型构建时各个参数的贡献率,结合图6图8综合分析超参数优化前后的效果可以看出,优化后的模型中参数贡献率最大值可以从19.38%提高到32.22%,同时,未优化模型中所有参数均有贡献率; 优化后去除贡献率为0的参数2个。对去除低贡献率的参数有较为明显的作用。再结合图10可以看出,进行参数优化后的模型得出的预测值更接近于真实值,误差更小,预测结果更稳定。

4.2 ATLAS数据估测精度分析及优化建议

本研究所有样地均使用差分RTK设备测定,且保证误差在0.02 m内,能保证坐标采集精度较高。同时,样地选择与光斑足印重叠的样圆(半径为8.5 m,面积为176.625 m2),更能保证测定的LAI值与该光斑足印的真实值误差较小。虽然现场LAI的测定使用了精度极高的LAI-2200设备,但香格里拉市位于高海拔落差的区域[17,44],林中测定作业较为不便,且数据处理也较繁杂,如考虑时间成本,可替换简单鱼眼镜头采集,但精度可能会受到影响。同时,研究使用随机表面查找算法是考虑了时间效率的决定,并不能算作该模型的最优参数集合,只能算作50 000组参数组合中的最优参数。如果后期不考虑时间成本,可使用scikit-learn库中的全面查找算法[41]对模型进行全参数优化。除此之外,还可以引入深度学习[43,45 -47]等其他算法,进一步提高拟合精度。

4.3 基于ATLAS数据估测LAI模型可移植性展望

本文建立了一套数据预处理、参数集成化提取、超参数自动适应性查找、最佳模型拟合的流程化系统。只需要输入测定的真实值数据进行建模,即可得到研究区中所有光斑内的LAI预测值。同时,因为ICESat-2/ATLAS数据采集特性,基本可以实现全球覆盖[19],保证了研究区选取的灵活性。

5 结论

为评估星载光子计数雷达估测LAI的能力,研究基于ICESat-2卫星先进地形激光测高系统(ATLAS)获取的光子点云数据对香格里拉市内所有光斑进行了数据预处理、参数提取和模型优化等步骤。总结出了一套自动查找随机森林模型超参数优化后估测LAI的程序方法,并进行了优化前后的差异性分析。确定了基于ICESat-2/ATLAS数据经过去噪、分类算法处理后提取的参数在对LAI估测中展现了极好的效果,模型优化前后的决定系数R2均大于0.8。同时使用随机表面查找算法进行随机森林模型的超参数优化,可以较为明显地提升模型估测精度。最后将LAI估测值进行空间制图,总体呈现四周低、中间高的特点; 同时,LAI较高的区域总体呈现西北向东南贯穿的趋势,与研究区的森林分布现状极为吻合。综上,使用ATLAS数据产品估测LAI是可行的。

参考文献

Chen J M, Menges C H, Leblanc S G.

Global mapping of foliage clumping index using multi-angular satellite data

[J]. Remote Sensing of Environment, 2005, 97(4):447-457.

DOI:10.1016/j.rse.2005.05.003      URL     [本文引用: 2]

Friedl M A, Sulla-Menashe D, Tan B, et al.

MODIS collection 5 global land cover:Algorithm refinements and characterization of new datasets

[J]. Remote Sensing of Environment, 2010, 114(1):168-182.

DOI:10.1016/j.rse.2009.08.016      URL     [本文引用: 2]

林晓娟. 基于ICESat-2和GEDI森林冠层高度和森林地上生物量遥感诊断[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021.

[本文引用: 1]

Lin X J. Remote sensing diagnosis of forest canopy height and forest aboveground biomass based on ICESat-2 and GEDI[D]. Beijing: University of Chinese Academy of Sciences (Aerospace Information Research Institute,Chinese Academy of Sciences), 2021.

[本文引用: 1]

Moussavi M S, Abdalati W, Scambos T, et al.

Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data:Implications for canopy height retrieval from future ICESat-2 data

[J]. International Journal of Remote Sensing, 2014, 35(13):5263-5279.

DOI:10.1080/01431161.2014.939780      URL     [本文引用: 2]

Liu M S, Xing Y Q, Wu H B, et al.

Study on mean forest canopy height estimation based on ICESat-GLAS waveforms

[J]. Forest Research, 2014, 27(3):309-315.

[本文引用: 1]

García M, Popescu S, Riaño D, et al.

Characterization of canopy fuels using ICESat/GLAS data

[J]. Remote Sensing of Environment, 2012, 123:81-89.

DOI:10.1016/j.rse.2012.03.018      URL     [本文引用: 1]

Luo S, Wang C, Li G, et al.

Retrieving leaf area index using ICESat/GLAS full-waveform data

[J]. Remote Sensing Letters, 2013, 4(8):745-753.

DOI:10.1080/2150704X.2013.790573      URL     [本文引用: 1]

Neumann T A, Martino A J, Markus T, et al.

The ice,cloud,and land elevation satellite-2 mission:A global geolocated photon product derived from the advanced topographic laser altimeter system

[J]. Remote Sensing of Environment, 2019, 233:111325.

DOI:10.1016/j.rse.2019.111325      URL     [本文引用: 1]

Huang X, Xie H, Liang T, et al.

Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau

[J]. International Journal of Remote Sensing, 2011, 32(18):5177-5196.

DOI:10.1080/01431161.2010.495092      URL     [本文引用: 1]

董佳臣, 倪文俭, 张志玉, .

ICESat-2植被冠层高度和地表高程数据产品用于森林高度提取的效果评价

[J]. 遥感学报, 2021, 25(6):1294-307.

[本文引用: 2]

Dong J C, Ni W J, Zhang Z Y, et al.

Performance of ICESat-2 ATL08 product on the estimation of forest height by referencing to small footprint LiDAR data

[J]. National Remote Sensing Bulletin, 2021, 25(6):1294-1307.

DOI:10.11834/jrs.20219449      URL     [本文引用: 2]

Huang J P, Xing Y Q, Qin L.

Review of noise filtering algorithm for photon data

[J]. The International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020, 42:105-110.

[本文引用: 1]

Gwenzi D, Lefsky M A, Suchdeo V P, et al.

Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 118:68-82.

DOI:10.1016/j.isprsjprs.2016.04.009      URL     [本文引用: 1]

张欢, 李弘毅, 李浩杰, .

基于机载LiDAR的高寒山区遥感高程数据精度评估

[J]. 遥感技术与应用, 2021, 36(6):1311-1320.

[本文引用: 1]

Zhang H, Li H Y, Li H J, et al.

Accuracy evaluation of remote sensing elevation data in alpine mountains based on airborne LiDAR

[J]. Remote Sensing Technology and Application, 2021, 36(6):1311-1320.

[本文引用: 1]

Neuenschwander A L, Magruder L A.

The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems

[J]. Remote Sensing, 2016, 8(12):1039.

DOI:10.3390/rs8121039      URL     [本文引用: 1]

Narine L L, Popescu S, Neuenschwander A, et al.

Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data

[J]. Remote Sensing of Environment, 2019, 224:1-11.

DOI:10.1016/j.rse.2019.01.037      [本文引用: 1]

The Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) launched on September 15th, 2018 and this mission offers an extraordinary opportunity to contribute to an assessment of forest resources at multiple spatial scales. This study served to develop a methodology for utilizing ICESat-2 data over vegetated areas. The specific objectives were to: (1) derive a simulated ICESat-2 photon-counting lidar (PCL) vegetation product using airborne lidar data, (2) examine the use of simulated PCL metrics for modelling aboveground biomass (AGB) along ICESat-2 profiles using a simulated ICESat-2 PCL vegetation product and reference AGB estimated from airborne lidar data, and (3) estimate forest canopy cover using simulated PCL canopy product data and airborne lidar-derived canopy cover. Using existing airborne lidar data for Sam Houston National Forest (SHNF) in Texas and known ICESat-2 track locations, PCL simulations were carried out. Three scenarios were analyzed in this study; 1) simulated data without the addition of noise, 2) processed simulated data for daytime, and 3) nighttime scenarios. Segments measuring 100 m along the proposed ICESat-2 tracks were used to extract simulated PCL metrics from each of the three data scenarios and spatially coincident, reference airborne lidar-estimated AGB and airborne lidar canopy cover estimates. Linear regression models were then developed with a subset of the simulated PCL segments to estimate AGB and canopy cover and their performance assessed using separate testing sets. AGB model testing with the simulated dataset without noise, nighttime and daytime scenarios resulted in R-2 values of 0.79, 0.79 and 0.63 respectively, with root mean square error (RMSE) values of 19.16 Mg/ha, 19.23 Mg/ha, and 25.35 Mg/ha. Predictive models for canopy cover (4.6 m) achieved R-2 values of 0.93, 0.75 and 0.63 and RMSE values of 6.36%, 12.33% and 15.01% for the simulated dataset without noise, nighttime and daytime scenarios respectively. Findings from this study suggest the potential of ICESat-2 for estimating AGB, given the photon detection rate and background noise anticipated by ICESat-2 under temperate forest settings, and especially in the data format provided by standard ICESat-2 data vegetation products.

Zhang J, Tian J, Li X, et al.

Leaf area index retrieval with ICESat-2 photon counting LiDAR

[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103:102488.

DOI:10.1016/j.jag.2021.102488      URL     [本文引用: 5]

Shi L, Zhao H, Li Y, et al.

Evaluation of Shangri-La County’s tourism resources and ecotourism carrying capacity

[J]. International Journal of Sustainable Development and World Ecology, 2015, 22(2):103-109.

DOI:10.1080/13504509.2014.927018      URL     [本文引用: 2]

俄相颖, 戴光耀, 吴松华.

ICESat-2 ATL03数据预处理及校正方法

[J]. 红外与激光工程, 2021, 50(6):92-102.

[本文引用: 1]

E X Y, Dai G Y, Wu S H.

ICESat-2 ATL03 data preprocessing and correction method

[J]. Infrared and Laser Engineering, 2021, 50(6):92-102.

[本文引用: 1]

Magruder L, Neumann T, Kurtz N.

ICESat-2 early mission synopsis and observatory performance

[J]. Earth and Space Science, 2021, 8(5): e2020EA001555.

[本文引用: 3]

Neuenschwander A, Guenther E, White J C, et al.

Validation of ICESat-2 terrain and canopy heights in boreal forests

[J]. Remote Sensing of Environment, 2020, 251:112110.

DOI:10.1016/j.rse.2020.112110      URL     [本文引用: 1]

Parrish C E, Magruder L A, Neuenschwander A L, et al.

Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance

[J]. Remote Sensing, 2019, 11(14):1634.

DOI:10.3390/rs11141634      URL     [本文引用: 2]

NASA’s Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) was launched in September, 2018. The satellite carries a single instrument, ATLAS (Advanced Topographic Laser Altimeter System), a green wavelength, photon-counting lidar, enabling global measurement and monitoring of elevation with a primary focus on the cryosphere. Although bathymetric mapping was not one of the design goals for ATLAS, pre-launch work by our research team showed the potential to map bathymetry with ICESat-2, using data from MABEL (Multiple Altimeter Beam Experimental Lidar), NASA’s high-altitude airborne ATLAS emulator, and adapting the laser-radar equation for ATLAS specific parameters. However, many of the sensor variables were only approximations, which limited a full assessment of the bathymetric mapping capabilities of ICESat-2 during pre-launch studies. Following the successful launch, preliminary analyses of the geolocated photon returns have been conducted for a number of coastal sites, revealing several salient examples of seafloor detection in water depths of up to ~40 m. The geolocated seafloor photon returns cannot be taken as bathymetric measurements, however, since the algorithm used to generate them is not designed to account for the refraction that occurs at the air–water interface or the corresponding change in the speed of light in the water column. This paper presents the first early on-orbit validation of ICESat-2 bathymetry and quantification of the bathymetric mapping performance of ATLAS using data acquired over St. Thomas, U.S. Virgin Islands. A refraction correction, developed and tested in this work, is applied, after which the ICESat-2 bathymetry is compared against high-accuracy airborne topo-bathymetric lidar reference data collected by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). The results show agreement to within 0.43—0.60 m root mean square error (RMSE) over 1 m grid resolution for these early on-orbit data. Refraction-corrected bottom return photons are then inspected for four coastal locations around the globe in relation to Visible Infrared Imaging Radiometer Suite (VIIRS) Kd(490) data to empirically determine the maximum depth mapping capability of ATLAS as a function of water clarity. It is demonstrated that ATLAS has a maximum depth mapping capability of nearly 1 Secchi in depth for water depths up to 38 m and Kd(490) in the range of 0.05–0.12 m−1. Collectively, these results indicate the great potential for bathymetric mapping with ICESat-2, offering a promising new tool to assist in filling the global void in nearshore bathymetry.

Wang C, Zhu X, Nie S, et al.

Ground elevation accuracy verification of ICESat-2 data:A case study in Alaska,USA

[J]. Optics Express, 2019, 27(26):38168-38179.

DOI:10.1364/OE.27.038168      URL     [本文引用: 1]

Ghosh S M, Behera M D, Paramanik S.

Canopy height estimation using Sentinel series images through machine learning models in a mangrove forest

[J]. Remote Sensing, 2020, 12(9):1519.

DOI:10.3390/rs12091519      URL     [本文引用: 2]

Canopy height serves as a good indicator of forest carbon content. Remote sensing-based direct estimations of canopy height are usually based on Light Detection and Ranging (LiDAR) or Synthetic Aperture Radar (SAR) interferometric data. LiDAR data is scarcely available for the Indian tropics, while Interferometric SAR data from commercial satellites are costly. High temporal decorrelation makes freely available Sentinel-1 interferometric data mostly unsuitable for tropical forests. Alternatively, other remote sensing and biophysical parameters have shown good correlation with forest canopy height. The study objective was to establish and validate a methodology by which forest canopy height can be estimated from SAR and optical remote sensing data using machine learning models i.e., Random Forest (RF) and Symbolic Regression (SR). Here, we analysed the potential of Sentinel-1 interferometric coherence and Sentinel-2 biophysical parameters to propose a new method for estimating canopy height in the study site of the Bhitarkanika wildlife sanctuary, which has mangrove forests. The results showed that interferometric coherence, and biophysical variables (Leaf Area Index (LAI) and Fraction of Vegetation Cover (FVC)) have reasonable correlation with canopy height. The RF model showed a Root Mean Squared Error (RMSE) of 1.57 m and R2 value of 0.60 between observed and predicted canopy heights; whereas, the SR model through genetic programming demonstrated better RMSE and R2 values of 1.48 and 0.62 m, respectively. The SR also established an interpretable model, which is not possible via any other machine learning algorithms. The FVC was found to be an essential variable for predicting forest canopy height. The canopy height maps correlated with ICESat-2 estimated canopy height, albeit modestly. The study demonstrated the effectiveness of Sentinel series data and the machine learning models in predicting canopy height. Therefore, in the absence of commercial and rare data sources, the methodology demonstrated here offers a plausible alternative for forest canopy height estimation.

马山木, 甘甫平, 吴怀春, .

ICESat-2数据监测青藏高原湖泊2018—2021年水位变化

[J]. 自然资源遥感, 2022, 34(3):164-172.doi:10.6046/zrzyyg.2021329.

[本文引用: 1]

Ma S M, Gan F P, Wu H C, et al.

Monitoring lake level changes on the Tibetan Plateau from 2018 to 2021 using ICESat-2 data

[J]. Remote Sensing for Natural Resources, 2022, 34(3):164-172.doi:10.6046/zrzyyg.2021329.

[本文引用: 1]

Shen X, Ke C Q, Yu X, et al.

Evaluation of ice,cloud,and land elevation satellite-2 (ICESat-2) land ice surface heights using airborne topographic mapper (ATM) data in Antarctica

[J]. International Journal of Remote Sensing, 2021, 42(7):2556-2573.

DOI:10.1080/01431161.2020.1856962      URL     [本文引用: 1]

Chen Y, Ma L, Yu D, et al.

Improving leaf area index retrieval using multi-sensor images and stacking learning in subtropical forests of China

[J]. Remote Sensing, 2021, 14(1):148.

DOI:10.3390/rs14010148      URL     [本文引用: 1]

The leaf area index (LAI) is a key indicator of the status of forest ecosystems that is important for understanding global carbon and water cycles as well as terrestrial surface energy balances and the impacts of climate change. Machine learning (ML) methods offer promising ways of generating spatially explicit LAI data covering large regions based on optical images. However, there have been few efforts to analyze the LAI in heterogeneous subtropical forests with complex terrain by fusing high-resolution multi-sensor data from the Sentinel-1 Synthetic Aperture Radar (SAR), Sentinel-2 Multi Spectral Instrument (MSI), and Advanced Land Observing Satellite-1 digital elevation model (DEM). Here, forest LAI mapping was performed by integrating the MSI, SAR, and DEM data using a stacking learning (SL) approach that incorporates distinct predictions from a set of optimized individual ML algorithms. The method’s performance was evaluated by comparison to field forest LAI measurements acquired in Xingguo and Gandong of subtropical China. The results showed that the addition of the SAR and DEM images using the SL model compared to the inputs of only optical images reduced the mean absolute error (MAE) and root mean square error (RMSE) by 26% and 18%, respectively, in Xingguo, and by 12% and 8%, respectively, in Gandong. Furthermore, the combination of all images had the best prediction performance. SL was found to be more robust and accurate than conventional individual ML models, while the MAE and RMSE were decreased by 71% and 64%, respectively, in Xingguo, and by 68% and 59%, respectively, in Gandong. Therefore, the SL model using the three-source data combination produced satisfied prediction accuracy with the coefficients of determination (R2), MAE, and RMSE of 0.96, 0.17, and 0.28, respectively, in Xingguo and 0.94, 0.30, and 0.47, respectively, in Gandong. This study revealed the potential of the SL algorithm for retrieving the forest LAI using multi-sensor data in areas with complex terrain.

Fang H, Baret F, Plummer S, et al.

An overview of global leaf area index (LAI):Methods,products,validation,and applications

[J]. Reviews of Geophysics, 2019, 57(3):739-799.

DOI:10.1029/2018RG000608      URL     [本文引用: 1]

Leaf area index (LAI) is a critical vegetation structural variable and is essential in the feedback of vegetation to the climate system. The advancement of the global Earth Observation has enabled the development of global LAI products and boosted global Earth system modeling studies. This overview provides a comprehensive analysis of LAI field measurements and remote sensing estimation methods, the product validation methods and product uncertainties, and the application of LAI in global studies. First, the paper clarifies some definitions related to LAI and introduces methods to determine LAI from field measurements and remote sensing observations. After introducing some major global LAI products, progresses made in temporal compositing and prospects for future LAI estimation are analyzed. Subsequently, the overview discusses various LAI product validation schemes, uncertainties in global moderate resolution LAI products, and high resolution reference data. Finally, applications of LAI in global vegetation change, land surface modeling, and agricultural studies are presented. It is recommended that (1) continued efforts are taken to advance LAI estimation algorithms and provide high temporal and spatial resolution products from current and forthcoming missions; (2) further validation studies be conducted to address the inadequacy of current validation studies, especially for underrepresented regions and seasons; and (3) new research frontiers, such as machine learning algorithms, light detection and ranging technology, and unmanned aerial vehicles be pursued to broaden the production and application of LAI.

Chen B, Pang Y, Li Z, et al.

Ground and top of canopy extraction from photon-counting LiDAR data using local outlier factor with ellipse searching area

[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9):1447-1451.

DOI:10.1109/LGRS.8859      URL     [本文引用: 1]

Nie S, Wang C, Xi X, et al.

Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data

[J]. Optics Express, 2018, 26(10):A520-A540.

DOI:10.1364/OE.26.00A520      URL     [本文引用: 4]

An M, Xing W, Han Y, et al.

The optimal soil water content models based on crop-LAI and hyperspectral data of winter wheat

[J]. Irrigation Science, 2021, 39(6):687-701.

DOI:10.1007/s00271-021-00745-z      [本文引用: 1]

Zhang J, Kerekes J.

An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data

[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(4):726-730.

DOI:10.1109/LGRS.2014.2360367      URL     [本文引用: 1]

Xia S, Wang C, Xi X H, et al.

Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2

[J]. Remote Sensing, 2014, 18(4):1199-1207.

[本文引用: 1]

陆大进, 黎东, 朱笑笑, .

基于卷积神经网络的ICESat-2光子点云去噪分类

[J]. 地球信息科学学报, 2021, 23(11):2086-2095.

DOI:10.12082/dqxxkx.2021.210103      [本文引用: 1]

ICESat-2(Ice, Cloud, and land Elevation Satellite-2)是美国NASA(National Aeronautics and Space Administration)在2018年发射的激光测高卫星,其上搭载的激光测高系统ATLAS(Advanced Topographic Laser Altimeter System)采用微脉冲多波束光子计数激光雷达系统,因其低能耗、高探测灵敏度、高重复频率的特性极大改善了沿轨采样密度,但也使获取的数据中包含大量的噪声,如何有效实现光子点云去噪分类成为后续应用的关键,也是当前研究的热点和难点,为此本文提出一种基于卷积神经网络的光子点云去噪和分类算法。首先将光子点云按照沿轨和高程方向划分格网,去除明显的噪声光子,并将每个粗信号光子点栅格化为影像;然后基于少量样本构建的卷积神经网络分类模型实现光子点云精去噪和分类;最后利用机载激光雷达数据进行验证,并与ATL08产品的去噪分类结果进行对比。结果表明,对于裸地和森林区域,卷积神经网络算法均能有效去除噪声光子,特别对于森林区域,可同时实现去噪和分类;其中,裸地区域地表计算的R<sup>2</sup>和RMSE分别为1.0和0.72 m,森林区域地表和树冠计算的R<sup>2</sup>分别为1.0和0.70, RMSE分别为1.11 m和4.99 m。本文利用深度学习算法实现光子点云去噪分类,在裸地和森林区域均取得了较好的结果,为后续光子点云数据处理提供了参考。

Lu D J, Li D, Zhu X X, et al.

Denoising and classification of ICESat-2 photon point cloud based on convolutional neural network

[J] Journal of Geo-Information Science, 2021, 23(11):2086-2095.

[本文引用: 1]

Zhu X, Nie S, Wang C, et al.

A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting LiDAR data

[J]. Remote Sensing, 2018, 10(12):1962.

DOI:10.3390/rs10121962      URL     [本文引用: 4]

The Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission employs a micro-pulse photon-counting LiDAR system for mapping and monitoring the biomass and carbon of terrestrial ecosystems over large areas. In preparation for ICESat-2 data processing and applications, this paper aimed to develop and validate an effective algorithm for better estimating ground elevation and vegetation height from photon-counting LiDAR data. Our new proposed algorithm consists of three key steps. Firstly, the noise photons were filtered out using a noise removal algorithm based on localized statistical analysis. Secondly, we classified the signal photons into canopy photons and ground photons by conducting a series of operations, including elevation frequency histogram building, empirical mode decomposition (EMD), and progressive densification. At the same time, we also identified the top of canopy (TOC) photons from canopy photons by percentile statistics method. Thereafter, the ground and TOC surfaces were generated from ground photons and TOC photons by cubic spline interpolation, respectively. Finally, the ground elevation and vegetation height were estimated by retrieved ground and TOC surfaces. The results indicate that the noise removal algorithm is effective in identifying background noise and preserving signal photons. The retrieved ground elevation is more accurate than the retrieved vegetation height, and the results of nighttime data are better than those of the corresponding daytime data. Specifically, the root-mean-square error (RMSE) values of ground elevation estimates range from 2.25 to 6.45 m for daytime data and 2.03 to 6.03 m for nighttime data. The RMSE values of vegetation height estimates range from 4.63 to 8.92 m for daytime data and 4.55 to 8.65 m for nighttime data. Our algorithm performs better than the previous algorithms in estimating ground elevation and vegetation height due to lower RMSE values. Additionally, the results also illuminate that the photon classification algorithm effectively reduces the negative effects of slope and vegetation coverage. Overall, our paper provides an effective solution for estimating ground elevation and vegetation height from micro-pulse photon-counting LiDAR data.

Tang H, Dubayah R, Swatantran A, et al.

Retrieval of vertical LAI profiles over tropical rain forests using waveform LiDAR at La Selva,Costa Rica

[J]. Remote Sensing of Environment, 2012, 124(9):242-250.

DOI:10.1016/j.rse.2012.05.005      URL     [本文引用: 1]

Nie S, Wang C, Dong P, et al.

A revised progressive TIN densification for filtering airborne LiDAR data

[J]. Measurement, 2017, 104:70-77.

DOI:10.1016/j.measurement.2017.03.007      URL     [本文引用: 3]

Axelsson P.

DEM generation from laser scanner data using adaptive TIN models

[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(4):110-117.

[本文引用: 1]

Zhang L, Zeng Y, Zhuang R, et al.

In situ observation-constrained global surface soil moisture using random forest model

[J]. Remote Sensing, 2021, 13(23):4893.

DOI:10.3390/rs13234893      URL     [本文引用: 2]

The inherent biases of different long-term gridded surface soil moisture (SSM) products, unconstrained by the in situ observations, implies different spatio-temporal patterns. In this study, the Random Forest (RF) model was trained to predict SSM from relevant land surface feature variables (i.e., land surface temperature, vegetation indices, soil texture, and geographical information) and precipitation, based on the in situ soil moisture data of the International Soil Moisture Network (ISMN.). The results of the RF model show an RMSE of 0.05 m3 m−3 and a correlation coefficient of 0.9. The calculated impurity-based feature importance indicates that the Antecedent Precipitation Index affects most of the predicted soil moisture. The geographical coordinates also significantly influence the prediction (i.e., RMSE was reduced to 0.03 m3 m−3 after considering geographical coordinates), followed by land surface temperature, vegetation indices, and soil texture. The spatio-temporal pattern of RF predicted SSM was compared with the European Space Agency Climate Change Initiative (ESA-CCI) soil moisture product, using both time-longitude and latitude diagrams. The results indicate that the RF SSM captures the spatial distribution and the daily, seasonal, and annual variabilities globally.

Zhu X, Wang C, Nie S, et al.

Mapping forest height using photon-counting LiDAR data and Landsat8 OLI data:A case study in Virginia and North Carolina,USA

[J]. Ecological Indicators, 2020, 114:106287.

DOI:10.1016/j.ecolind.2020.106287      URL     [本文引用: 2]

Zhou R, Yang C, Li E, et al.

Object-based wetland vegetation classification using multi-feature selection of unoccupied aerial vehicle RGB imagery

[J]. Remote Sensing, 2021, 13(23):4910.

DOI:10.3390/rs13234910      URL     [本文引用: 2]

Wetland vegetation is an important component of wetland ecosystems and plays a crucial role in the ecological functions of wetland environments. Accurate distribution mapping and dynamic change monitoring of vegetation are essential for wetland conservation and restoration. The development of unoccupied aerial vehicles (UAVs) provides an efficient and economic platform for wetland vegetation classification. In this study, we evaluated the feasibility of RGB imagery obtained from the DJI Mavic Pro for wetland vegetation classification at the species level, with a specific application to Honghu, which is listed as a wetland of international importance. A total of ten object-based image analysis (OBIA) scenarios were designed to assess the contribution of five machine learning algorithms to the classification accuracy, including Bayes, K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), and random forest (RF), multi-feature combinations and feature selection implemented by the recursive feature elimination algorithm (RFE). The overall accuracy and kappa coefficient were compared to determine the optimal classification method. The main results are as follows: (1) RF showed the best performance among the five machine learning algorithms, with an overall accuracy of 89.76% and kappa coefficient of 0.88 when using 53 features (including spectral features (RGB bands), height information, vegetation indices, texture features, and geometric features) for wetland vegetation classification. (2) The RF model constructed by only spectral features showed poor classification results, with an overall accuracy of 73.66% and kappa coefficient of 0.70. By adding height information, VIs, texture features, and geometric features to construct the RF model layer by layer, the overall accuracy was improved by 8.78%, 3.41%, 2.93%, and 0.98%, respectively, demonstrating the importance of multi-feature combinations. (3) The contribution of different types of features to the RF model was not equal, and the height information was the most important for wetland vegetation classification, followed by the vegetation indices. (4) The RFE algorithm effectively reduced the number of original features from 53 to 36, generating an optimal feature subset for wetland vegetation classification. The RF based on the feature selection result of RFE (RF-RFE) had the best performance in ten scenarios, and provided an overall accuracy of 90.73%, which was 0.97% higher than the RF without feature selection. The results illustrate that the combination of UAV-based RGB imagery and the OBIA approach provides a straightforward, yet powerful, approach for high-precision wetland vegetation classification at the species level, in spite of limited spectral information. Compared with satellite data or UAVs equipped with other types of sensors, UAVs with RGB cameras are more cost efficient and convenient for wetland vegetation monitoring and mapping.

Pedregosa F, Varoquaux G, Gramfort A, et al.

Scikit-learn:Machine learning in Python

[J]. The Journal of Mmachine Learning Research, 2011, 12:2825-2830.

[本文引用: 5]

Narine L L, Popescu S C, Malambo L.

Using ICESat-2 to estimate and map forest aboveground biomass:A first example

[J]. Remote Sensing, 2020, 12(11):1824.

DOI:10.3390/rs12111824      URL     [本文引用: 1]

National Aeronautics and Space Administration’s (NASA’s) Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) provides rich insights over the Earth’s surface through elevation data collected by its Advanced Topographic Laser Altimeter System (ATLAS) since its launch in September 2018. While this mission is primarily aimed at capturing ice measurements, ICESat-2 also provides data over vegetated areas, offering the capability to gain insights into ecosystem structure and the potential to contribute to the sustainable management of forests. This study involved an examination of the utility of ICESat-2 for estimating forest aboveground biomass (AGB). The objectives of this study were to: (1) investigate the use of canopy metrics for estimating AGB, using data extracted from an ICESat-2 transect over forests in south-east Texas; (2) compare the accuracy for estimating AGB using data from the strong beam and weak beam; and (3) upscale predicted AGB estimates using variables from Landsat multispectral imagery and land cover and canopy cover maps, to generate a 30 m spatial resolution AGB map. Methods previously developed with simulated ICESat-2 data over Sam Houston National Forest (SHNF) in southeast Texas were adapted using actual data from an adjacent ICESat-2 transect over similar vegetation conditions. Custom noise filtering and photon classification algorithms were applied to ICESat-2’s geolocated photon data (ATL03) for one beam pair, consisting of a strong and weak beam, and canopy height estimates were retrieved. Canopy height parameters were extracted from 100 m segments in the along-track direction for estimating AGB, using regression analysis. ICESat-2-derived AGB estimates were then extrapolated to develop a 30 m AGB map for the study area, using vegetation indices from Landsat 8 Operational Land Imager (OLI), National Land Cover Database (NLCD) landcover and canopy cover, with random forests (RF). The AGB estimation models used few canopy parameters and suggest the possibility for applying well-developed methods for modeling AGB with airborne light detection and ranging (lidar) data, using processed ICESat-2 data. The final regression model achieved a R2 and root mean square error (RMSE) value of 0.62 and 24.63 Mg/ha for estimating AGB and RF model evaluation with a separate test set yielded a R2 of 0.58 and RMSE of 23.89 Mg/ha. Findings provide an initial look at the ability of ICESat-2 to estimate AGB and serve as a basis for further upscaling efforts.

Narine L L, Popescu S C, Malambo L.

Synergy of ICESat-2 and Landsat for mapping forest aboveground biomass with deep learning

[J]. Remote Sensing, 2019, 11(12):1503.

DOI:10.3390/rs11121503      URL     [本文引用: 2]

Spatially continuous estimates of forest aboveground biomass (AGB) are essential to supporting the sustainable management of forest ecosystems and providing invaluable information for quantifying and monitoring terrestrial carbon stocks. The launch of the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) on September 15th, 2018 offers an unparalleled opportunity to assess AGB at large scales using along-track samples that will be provided during its three-year mission. The main goal of this study was to investigate deep learning (DL) neural networks for mapping AGB with ICESat-2, using simulated photon-counting lidar (PCL)-estimated AGB for daytime, nighttime, and no noise scenarios, Landsat imagery, canopy cover, and land cover maps. The study was carried out in Sam Houston National Forest located in south-east Texas, using a simulated PCL-estimated AGB along two years of planned ICESat-2 profiles. The primary tasks were to investigate and determine neural network architecture, examine the hyper-parameter settings, and subsequently generate wall-to-wall AGB maps. A first set of models were developed using vegetation indices calculated from single-date Landsat imagery, canopy cover, and land cover, and a second set of models were generated using metrics from one year of Landsat imagery with canopy cover and land cover maps. To compare the effectiveness of final models, comparisons with Random Forests (RF) models were made. The deep neural network (DNN) models achieved R2 values of 0.42, 0.49, and 0.50 for the daytime, nighttime, and no noise scenarios respectively. With the extended dataset containing metrics calculated from Landsat images acquired on different dates, substantial improvements in model performance for all data scenarios were noted. The R2 values increased to 0.64, 0.66, and 0.67 for the daytime, nighttime, and no noise scenarios. Comparisons with Random forest (RF) prediction models highlighted similar results, with the same R2 and root mean square error (RMSE) range (15–16 Mg/ha) for daytime and nighttime scenarios. Findings suggest that there is potential for mapping AGB using a combinatory approach with ICESat-2 and Landsat-derived products with DL.

Su T, Spicer R A, Wu F X, et al.

A middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet

[J]. Proceedings of the National Academy of Sciences, 2020, 117(52):32989-32995.

DOI:10.1073/pnas.2012647117      URL     [本文引用: 2]

The ancient topography of the Tibetan Plateau and its role in biotic evolution are still poorly understood, mostly due to a lack of fossil evidence. Our discovery of ∼47-Mya plant fossils from a present elevation of 4,850 m in central Tibet, diminishes, significantly, that lack of knowledge. The fossils represent a humid subtropical vegetation and some of the 70 different plant forms show affinity to Early-Middle Eocene floras in both North America and Europe. Using leaf architecture, we calculate that the forest grew at ∼1,500-m elevation within an east–west trending valley under a monsoonal climate. Our findings highlight the complexity of Tibet’s ancient landscape and emphasize the importance of Tibet in the history of global biodiversity.

Li W, Niu Z, Shang R, et al.

High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1,Sentinel-2 and Landsat8 data

[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92:102163.

DOI:10.1016/j.jag.2020.102163      URL     [本文引用: 1]

Silva C A, Duncanson L, Hancock S, et al.

Fusing simulated GEDI,ICESat-2 and NISAR data for regional aboveground biomass mapping

[J]. Remote Sensing of Environment, 2021, 253:112234.

DOI:10.1016/j.rse.2020.112234      URL     [本文引用: 1]

夏恒, 汤健, 乔俊飞.

深度森林研究综述

[J]. 北京工业大学学报, 2022, 48(2):182-196.

[本文引用: 1]

Xia H, Tang J, Qiao J F.

Review of deep forest

[J]. Journal of Beijing University of Technology, 2022, 48(2):182-196.

[本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发