Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (3): 160-169    DOI: 10.6046/zrzyyg.2022173
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于ICESat2的西南山地森林LAI遥感估测模型优化
席磊(), 舒清态(), 孙杨, 黄金君, 宋涵玥
西南林业大学林学院,昆明 650224
Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China
XI Lei(), SHU Qingtai(), SUN Yang, HUANG Jinjun, SONG Hanyue
College of Forestry, Southwest Forestry University, Kunming 650224, China
全文: PDF(4456 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

叶面积指数(leaf area index,LAI)是森林生态系统重要参数,如何以较小成本提升区域尺度的山地森林LAI的遥感估测精度,对于精确掌握森林LAI的情况和进一步了解森林生态系统有重要意义。本研究以星载激光雷达ICESAT-2/ATLAS为主要信息源,以西南山地香格里拉市为研究区,基于随机森林回归(random forest,RF)遥感估测模型,结合地面51块LAI实测样地数据,在前期进行RF超参数优化基础上,采用决定系数、均方根误差、绝对平均误差和中位数绝对误差作为模型精度评价指标,对估测效果进行分析。结果表明: 使用随机表面查找算法进行RF回归模型的超参数优化,能明显提升模型估测LAI精度。提取出的地面光斑特征参数在山地森林LAI估测中有较高的贡献度和极佳的效果,可用于区域尺度的山地森林物理结构参数LAI的估测。同时,利用随机表面查找算法优化后的RF回归模型,估测精度更高,估测结果与研究区森林分布现状吻合,具有一定普适性。最后,研究确定了使用ICESat-2/ATLAS数据产品估测LAI是可行的,能为星载激光雷达估测中大范围的LAI提供一定的参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
席磊
舒清态
孙杨
黄金君
宋涵玥
关键词 ICESat-2/ATLAS叶面积指数超参数优化随机森林香格里拉    
Abstract

The leaf area index (LAI) is a critical parameter for the forest ecosystem. Improving the remote sensing estimation accuracy of the regional LAI of mountain forests at a low cost is of great significance for accurately determining the LAIs of forests and for further understanding the forest ecosystem. With spaceborne LiDAR ICESat-2/ATLAS data as a primary information source, this study investigated Shangri-La City in mountainous areas in southwestern China. Based on the remote sensing estimation model using random forest (RF) regression, RF hyperparameter optimization, and the data of 51 measured sample plots of LAI, this study analyzed the estimation effects of the model using accuracy evaluation indicators such as coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), and median absolute error (MedAE). The results are as follows: The hyperparameter optimization of the RF regression model using a random surface search algorithm can significantly improve the estimation accuracy of LAI. The extracted characteristic parameters of ground spots showed high contribution and excellent effects in the LAI estimation of mountain forests. Therefore, they can be applied to the estimation of regional LAI of mountain forests. The RF regression model optimized using the random surface search algorithm yielded higher estimation accuracy. The estimation results were consistent with the forest distribution in the study area, indicating certain generality. Finally, this study determined that it is feasible to employ ICESat-2/ATLAS data products for LAI estimation, providing a reference for medium- to large-scale LAI estimation based on spaceborne LiDAR.

Key wordsICESat-2/ATLAS    leaf area index    hyperparameter optimization    random forest    Shangri-La
收稿日期: 2022-04-28      出版日期: 2023-09-19
ZTFLH:  TP79  
  S771.8  
基金资助:国家自然科学基金项目“生态脆弱区典型森林生态系统生化参数高光谱遥感反演关键技术研究”(31860205);“基于LiDAR和MERSI数据滇西北乔木生物量反演关键技术研究”(31460194);云南省教育厅科学研究基金项目“基于深度学习的多源遥感协同的森林生物量估测研究”(2021Y249)
通讯作者: 舒清态(1970-),男,副教授,硕士生导师,研究方向为林业3S技术应用。Email: shuqt@163.com
作者简介: 席 磊(1997-),男,硕士研究生,研究方向为数字林业与森林资源管理。Email: swfuxilei@163.com
引用本文:   
席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022173      或      https://www.gtzyyg.com/CN/Y2023/V35/I3/160
Fig.1  研究区位置及样地示意图
样地
数量
均值 均值标
准差
标准差 最大值 最小值 中位数
51 0.468 1 0.038 8 0.265 8 0.967 0 0.012 1 0.509 0
Tab.1  样地LAI统计信息汇总
Fig.2  研究路线
Fig.3  噪声消除算法流程
Fig.4  光子分类算法流程
Fig.5  研究区有效光斑示意图
参数名 描述 类型
n_estimators 决策树的数量 整数型
min_samples_split 节点可分的最小样本数 整数或浮点型
min_samples_leaf 叶子节点含有的最少样本 整数或浮点型
max_features 构建决策树最优模型时考虑的最大特征数 整数或浮点型
max_depth 决策树最大深度 整数型
bootstrap 样本集是否放回抽样 布尔型
Tab.2  随机森林算法参数说明
Fig.6  建模参数重要性贡献比例
参数名 描述 数值/%
photon_rate_can 计算后每100 m段内冠层光子的光子率 19.38
n_toc_photons 区段内冠层顶部光子数 7.81
n_ca_photons 区段内冠层光子数 5.66
asr 表观反射率 4.20
h_median_canopy 区段内个体相对冠层高的中位数 3.62
solar_azimuth 太阳方位角 3.34
solar_elevation 太阳高度角 2.92
toc_roughness 区段内冠层顶光子相对高度的标准偏差 2.73
h_min_canopy 区段内冠层高度的最小值 2.56
dem_h 地理定位点处的最佳可用DEM值 2.55
Tab.3  未优化随机森林模型建模参数贡献率统计
Fig.7  随机森林模型拟合点线图
Fig.8  优化后建模参数重要性贡献比例
参数名 描述 数值/%
photon_rate_can 计算后每100 m段内冠层光子的光子率 32.22
toc_roughness 区段内冠层顶光子相对高度的标准偏差 13.39
asr 表观反射率 6.41
snr 定位光子的信噪比 6.19
h_te_median 在WGS84椭球体上方的光子高度的中值(分类为地形区段内) 4.86
h_te_max 在WGS84椭球体上方的光子高度的最大值(分类为地形区段内) 4.73
h_te_min 在WGS84椭球体上方的光子高度的最小值(分类为地形区段内) 4.61
canopy_openness 区段内冠层光子与段内所有光子的标准差(可推断冠层开放度) 4.41
h_te_rh25 25%分位数高度处的地形高度值 4.25
segment_landcover IGBP地表覆盖类型 4.17
Tab.4  超参数优化后随机森林模型建模参数贡献率统计
Fig.9  优化后随机森林模型拟合点线图
Fig.10  随机森林模型拟合散点图
Fig.11  研究区内ICESat-2光斑LAI空间分布
[1] Chen J M, Menges C H, Leblanc S G. Global mapping of foliage clumping index using multi-angular satellite data[J]. Remote Sensing of Environment, 2005, 97(4):447-457.
doi: 10.1016/j.rse.2005.05.003
[2] Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010, 114(1):168-182.
doi: 10.1016/j.rse.2009.08.016
[3] 林晓娟. 基于ICESat-2和GEDI森林冠层高度和森林地上生物量遥感诊断[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2021.
Lin X J. Remote sensing diagnosis of forest canopy height and forest aboveground biomass based on ICESat-2 and GEDI[D]. Beijing: University of Chinese Academy of Sciences (Aerospace Information Research Institute,Chinese Academy of Sciences), 2021.
[4] Moussavi M S, Abdalati W, Scambos T, et al. Applicability of an automatic surface detection approach to micro-pulse photon-counting LiDAR altimetry data:Implications for canopy height retrieval from future ICESat-2 data[J]. International Journal of Remote Sensing, 2014, 35(13):5263-5279.
doi: 10.1080/01431161.2014.939780
[5] Liu M S, Xing Y Q, Wu H B, et al. Study on mean forest canopy height estimation based on ICESat-GLAS waveforms[J]. Forest Research, 2014, 27(3):309-315.
[6] García M, Popescu S, Riaño D, et al. Characterization of canopy fuels using ICESat/GLAS data[J]. Remote Sensing of Environment, 2012, 123:81-89.
doi: 10.1016/j.rse.2012.03.018
[7] Luo S, Wang C, Li G, et al. Retrieving leaf area index using ICESat/GLAS full-waveform data[J]. Remote Sensing Letters, 2013, 4(8):745-753.
doi: 10.1080/2150704X.2013.790573
[8] Neumann T A, Martino A J, Markus T, et al. The ice,cloud,and land elevation satellite-2 mission:A global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019, 233:111325.
doi: 10.1016/j.rse.2019.111325
[9] Huang X, Xie H, Liang T, et al. Estimating vertical error of SRTM and map-based DEMs using ICESat altimetry data in the eastern Tibetan Plateau[J]. International Journal of Remote Sensing, 2011, 32(18):5177-5196.
doi: 10.1080/01431161.2010.495092
[10] 董佳臣, 倪文俭, 张志玉, 等. ICESat-2植被冠层高度和地表高程数据产品用于森林高度提取的效果评价[J]. 遥感学报, 2021, 25(6):1294-307.
Dong J C, Ni W J, Zhang Z Y, et al. Performance of ICESat-2 ATL08 product on the estimation of forest height by referencing to small footprint LiDAR data[J]. National Remote Sensing Bulletin, 2021, 25(6):1294-1307.
doi: 10.11834/jrs.20219449
[11] Huang J P, Xing Y Q, Qin L. Review of noise filtering algorithm for photon data[J]. The International Archives of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2020, 42:105-110.
[12] Gwenzi D, Lefsky M A, Suchdeo V P, et al. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 118:68-82.
doi: 10.1016/j.isprsjprs.2016.04.009
[13] 张欢, 李弘毅, 李浩杰, 等. 基于机载LiDAR的高寒山区遥感高程数据精度评估[J]. 遥感技术与应用, 2021, 36(6):1311-1320.
Zhang H, Li H Y, Li H J, et al. Accuracy evaluation of remote sensing elevation data in alpine mountains based on airborne LiDAR[J]. Remote Sensing Technology and Application, 2021, 36(6):1311-1320.
[14] Neuenschwander A L, Magruder L A. The potential impact of vertical sampling uncertainty on ICESat-2/ATLAS terrain and canopy height retrievals for multiple ecosystems[J]. Remote Sensing, 2016, 8(12):1039.
doi: 10.3390/rs8121039
[15] Narine L L, Popescu S, Neuenschwander A, et al. Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data[J]. Remote Sensing of Environment, 2019, 224:1-11.
doi: 10.1016/j.rse.2019.01.037
[16] Zhang J, Tian J, Li X, et al. Leaf area index retrieval with ICESat-2 photon counting LiDAR[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 103:102488.
doi: 10.1016/j.jag.2021.102488
[17] Shi L, Zhao H, Li Y, et al. Evaluation of Shangri-La County’s tourism resources and ecotourism carrying capacity[J]. International Journal of Sustainable Development and World Ecology, 2015, 22(2):103-109.
doi: 10.1080/13504509.2014.927018
[18] 俄相颖, 戴光耀, 吴松华. ICESat-2 ATL03数据预处理及校正方法[J]. 红外与激光工程, 2021, 50(6):92-102.
E X Y, Dai G Y, Wu S H. ICESat-2 ATL03 data preprocessing and correction method[J]. Infrared and Laser Engineering, 2021, 50(6):92-102.
[19] Magruder L, Neumann T, Kurtz N. ICESat-2 early mission synopsis and observatory performance[J]. Earth and Space Science, 2021, 8(5): e2020EA001555.
[20] Neuenschwander A, Guenther E, White J C, et al. Validation of ICESat-2 terrain and canopy heights in boreal forests[J]. Remote Sensing of Environment, 2020, 251:112110.
doi: 10.1016/j.rse.2020.112110
[21] Parrish C E, Magruder L A, Neuenschwander A L, et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance[J]. Remote Sensing, 2019, 11(14):1634.
doi: 10.3390/rs11141634
[22] Wang C, Zhu X, Nie S, et al. Ground elevation accuracy verification of ICESat-2 data:A case study in Alaska,USA[J]. Optics Express, 2019, 27(26):38168-38179.
doi: 10.1364/OE.27.038168
[23] Ghosh S M, Behera M D, Paramanik S. Canopy height estimation using Sentinel series images through machine learning models in a mangrove forest[J]. Remote Sensing, 2020, 12(9):1519.
doi: 10.3390/rs12091519
[24] 马山木, 甘甫平, 吴怀春, 等. ICESat-2数据监测青藏高原湖泊2018—2021年水位变化[J]. 自然资源遥感, 2022, 34(3):164-172.doi:10.6046/zrzyyg.2021329.
doi: 10.6046/zrzyyg.2021329
Ma S M, Gan F P, Wu H C, et al. Monitoring lake level changes on the Tibetan Plateau from 2018 to 2021 using ICESat-2 data[J]. Remote Sensing for Natural Resources, 2022, 34(3):164-172.doi:10.6046/zrzyyg.2021329.
doi: 10.6046/zrzyyg.2021329
[25] Shen X, Ke C Q, Yu X, et al. Evaluation of ice,cloud,and land elevation satellite-2 (ICESat-2) land ice surface heights using airborne topographic mapper (ATM) data in Antarctica[J]. International Journal of Remote Sensing, 2021, 42(7):2556-2573.
doi: 10.1080/01431161.2020.1856962
[26] Chen Y, Ma L, Yu D, et al. Improving leaf area index retrieval using multi-sensor images and stacking learning in subtropical forests of China[J]. Remote Sensing, 2021, 14(1):148.
doi: 10.3390/rs14010148
[27] Fang H, Baret F, Plummer S, et al. An overview of global leaf area index (LAI):Methods,products,validation,and applications[J]. Reviews of Geophysics, 2019, 57(3):739-799.
doi: 10.1029/2018RG000608
[28] Chen B, Pang Y, Li Z, et al. Ground and top of canopy extraction from photon-counting LiDAR data using local outlier factor with ellipse searching area[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9):1447-1451.
doi: 10.1109/LGRS.8859
[29] Nie S, Wang C, Xi X, et al. Estimating the vegetation canopy height using micro-pulse photon-counting LiDAR data[J]. Optics Express, 2018, 26(10):A520-A540.
doi: 10.1364/OE.26.00A520
[30] An M, Xing W, Han Y, et al. The optimal soil water content models based on crop-LAI and hyperspectral data of winter wheat[J]. Irrigation Science, 2021, 39(6):687-701.
doi: 10.1007/s00271-021-00745-z
[31] Zhang J, Kerekes J. An adaptive density-based model for extracting surface returns from photon-counting laser altimeter data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(4):726-730.
doi: 10.1109/LGRS.2014.2360367
[32] Xia S, Wang C, Xi X H, et al. Point cloud filtering and tree height estimation using airborne experiment data of ICESat-2[J]. Remote Sensing, 2014, 18(4):1199-1207.
[33] 陆大进, 黎东, 朱笑笑, 等. 基于卷积神经网络的ICESat-2光子点云去噪分类[J]. 地球信息科学学报, 2021, 23(11):2086-2095.
doi: 10.12082/dqxxkx.2021.210103
Lu D J, Li D, Zhu X X, et al. Denoising and classification of ICESat-2 photon point cloud based on convolutional neural network[J] Journal of Geo-Information Science, 2021, 23(11):2086-2095.
[34] Zhu X, Nie S, Wang C, et al. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting LiDAR data[J]. Remote Sensing, 2018, 10(12):1962.
doi: 10.3390/rs10121962
[35] Tang H, Dubayah R, Swatantran A, et al. Retrieval of vertical LAI profiles over tropical rain forests using waveform LiDAR at La Selva,Costa Rica[J]. Remote Sensing of Environment, 2012, 124(9):242-250.
doi: 10.1016/j.rse.2012.05.005
[36] Nie S, Wang C, Dong P, et al. A revised progressive TIN densification for filtering airborne LiDAR data[J]. Measurement, 2017, 104:70-77.
doi: 10.1016/j.measurement.2017.03.007
[37] Axelsson P. DEM generation from laser scanner data using adaptive TIN models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(4):110-117.
[38] Zhang L, Zeng Y, Zhuang R, et al. In situ observation-constrained global surface soil moisture using random forest model[J]. Remote Sensing, 2021, 13(23):4893.
doi: 10.3390/rs13234893
[39] Zhu X, Wang C, Nie S, et al. Mapping forest height using photon-counting LiDAR data and Landsat8 OLI data:A case study in Virginia and North Carolina,USA[J]. Ecological Indicators, 2020, 114:106287.
doi: 10.1016/j.ecolind.2020.106287
[40] Zhou R, Yang C, Li E, et al. Object-based wetland vegetation classification using multi-feature selection of unoccupied aerial vehicle RGB imagery[J]. Remote Sensing, 2021, 13(23):4910.
doi: 10.3390/rs13234910
[41] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:Machine learning in Python[J]. The Journal of Mmachine Learning Research, 2011, 12:2825-2830.
[42] Narine L L, Popescu S C, Malambo L. Using ICESat-2 to estimate and map forest aboveground biomass:A first example[J]. Remote Sensing, 2020, 12(11):1824.
doi: 10.3390/rs12111824
[43] Narine L L, Popescu S C, Malambo L. Synergy of ICESat-2 and Landsat for mapping forest aboveground biomass with deep learning[J]. Remote Sensing, 2019, 11(12):1503.
doi: 10.3390/rs11121503
[44] Su T, Spicer R A, Wu F X, et al. A middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet[J]. Proceedings of the National Academy of Sciences, 2020, 117(52):32989-32995.
doi: 10.1073/pnas.2012647117
[45] Li W, Niu Z, Shang R, et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1,Sentinel-2 and Landsat8 data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92:102163.
doi: 10.1016/j.jag.2020.102163
[46] Silva C A, Duncanson L, Hancock S, et al. Fusing simulated GEDI,ICESat-2 and NISAR data for regional aboveground biomass mapping[J]. Remote Sensing of Environment, 2021, 253:112234.
doi: 10.1016/j.rse.2020.112234
[47] 夏恒, 汤健, 乔俊飞. 深度森林研究综述[J]. 北京工业大学学报, 2022, 48(2):182-196.
Xia H, Tang J, Qiao J F. Review of deep forest[J]. Journal of Beijing University of Technology, 2022, 48(2):182-196.
[1] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[2] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[3] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[4] 吴玉鑫, 王卷乐, 韩保民, 严欣荣. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1): 180-188.
[5] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
[6] 王春霞, 张俊, 李屹旭, Phoumilay. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3): 50-58.
[7] 邓静雯, 田义超, 张强, 陶进, 张亚丽, 黄升光. 机载LiDAR在红树林林分平均高估算中的应用[J]. 自然资源遥感, 2022, 34(3): 129-137.
[8] 王雪洁, 施国萍, 周子钦, 甄洋. 基于随机森林算法对ERA5太阳辐射产品的订正[J]. 自然资源遥感, 2022, 34(2): 105-111.
[9] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[10] 柳明星, 刘建红, 马敏飞, 蒋娅, 曾靖超. 基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J]. 自然资源遥感, 2022, 34(1): 218-229.
[11] 周超凡, 宫辉力, 陈蓓蓓, 雷坤超, 施轹原, 赵宇. 联合WT-RF的津保高铁沿线地面沉降预测[J]. 自然资源遥感, 2021, 33(4): 34-42.
[12] 郭晓征, 姚云军, 贾坤, 张晓通, 赵祥. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4): 130-135.
[13] 刘春亭, 冯权泷, 金鼎坚, 史同广, 刘建涛, 朱明水. 随机森林协同Sentinel-1/2的东营市不透水层信息提取[J]. 自然资源遥感, 2021, 33(3): 253-261.
[14] 吴倩, 姜琦刚, 史鹏飞, 张莉莉. 基于高光谱的土壤碳酸钙含量估算模型研究[J]. 国土资源遥感, 2021, 33(1): 138-144.
[15] 许赟, 许艾文. 基于随机森林的遥感影像云雪雾分类检测[J]. 国土资源遥感, 2021, 33(1): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发