自然资源遥感, 2025, 37(6): 22-40 doi: 10.6046/zrzyyg.2022367

地球数据共享和知识服务

土地覆盖分类体系分析和总结

臧明润,1,2, 廖远鸿1, 陈舟1, 白玉琪,1,3

1.清华大学地球系统科学系,东亚迁徙鸟类与栖息地生态学教育部野外科学观测研究站,清华大学全球变化研究院,北京 100084

2.中国地质大学(北京)信息工程学院,北京 100083

3.清华大学中国城市研究院,北京 100084

Analysis and summary of land cover classification systems

ZANG Mingrun,1,2, LIAO Yuanhong1, CHEN Zhou1, BAI Yuqi,1,3

1. Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds and Their Habitatses, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China

2. School of Information Engineering, China University of Geosciences Beijing, Beijing 100083, China

3. Tsinghua Urban Institute, Tsinghua University, Beijing 100084, China

通讯作者: 白玉琪(1976-),男,博士,教授,主要从事地球空间数据基础设施及其应用研究。Email:yuqibai@tsinghua.edu.cn

责任编辑: 陈庆

收稿日期: 2022-09-15   修回日期: 2023-06-19  

基金资助: 国家重点研发计划项目“面向开放科学的国际地球观测系统互操作体系研究与示范”(2019YFE0126400)

Received: 2022-09-15   Revised: 2023-06-19  

作者简介 About authors

臧明润(2001-),男,博士研究生,主要从事生态学、地理信息科学研究。Email: zangmr@foxmail.com

摘要

土地覆盖分类体系是土地覆盖研究中的重要内容。该文总结了9种主要土地覆盖分类体系,展示了分类体系和相应数据产品,分析了体系之间的区别和联系,讨论了土地覆盖分类体系精细程度,以及分类体系、空间分辨率、空间覆盖范围的关系,讨论了分类体系之间的语义一致性。论文认为土地覆盖分类体系(land cover classification system,LCCS)和全球土地覆盖精细分辨率观测与监测数据(finer resolution observation and monitoring of global land cover,FROM-GLC)分类体系在精细化分类方面具有优势,高空间分辨率精细分类存在较大技术挑战和实现难度; 目前分类体系之间在逻辑关系、精细分类、名称定义、代码等多方面,存在明显的语义不一致现象; 最后总结指出全球土地覆盖分类研究存在全球化和区域化并存、分类更加精细、产品精度更高、时间间隔和空间分辨率更加细致的发展趋势,数据产品的语义不一致性还需改进,未来需在加强分类体系的兼容性、实现数据产品的共享互操作方面提出解决方案。

关键词: 土地覆盖; 分类体系; 时间分辨率; 空间分辨率; 数据产品; 语义一致性

Abstract

Land cover classification systems constitute a significant aspect of land cover research. This study summarized nine major land cover classification systems. It presented these classification systems along with their relevant data products and analyzed the differences and connections between them. Moreover, this study discussed the relationship of their fineness with spatial resolution and coverage, as well as their semantic consistency. The results indicate that LCCS and Finer Resolution Observation and Monitoring of Global Land Cover(FROM-GLC) excel in fine-scale classification but face technical challenges and implementation difficulties in fine-scale classification based on high spatial resolution data. Current classification systems exhibit significant semantic inconsistencies in logical relationships, fine-scale classification, nomenclature, and code. Global land cover classification research shows the following development trends: the coexistence of globalization and regionalization, finer-scale classification, higher product accuracy, and more detailed temporal and spatial resolution. The semantic consistency of data products needs to be enhanced by strengthening the compatibility of classification systems and finding solutions to data product sharing and interoperability.

Keywords: land cover; classification system; temporal resolution; spatial resolution; data product; semantic consistency

PDF (1534KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

臧明润, 廖远鸿, 陈舟, 白玉琪. 土地覆盖分类体系分析和总结[J]. 自然资源遥感, 2025, 37(6): 22-40 doi:10.6046/zrzyyg.2022367

ZANG Mingrun, LIAO Yuanhong, CHEN Zhou, BAI Yuqi. Analysis and summary of land cover classification systems[J]. Remote Sensing for Land & Resources, 2025, 37(6): 22-40 doi:10.6046/zrzyyg.2022367

0 引言

土地覆盖是地球表面各种物质类型及其自然属性与特征的综合体[1]。不同类型的土地覆盖,通过与电磁辐射的相互作用,在航空照片或卫星图像中以色彩或数值表现反射能量的空间分布[2]。土地覆盖及其变化反映着人类与自然相互作用、人类与社会经济活动、地表水热和物质平衡、生物地球化学循环、全球气候变化等过程[3-4],对全球变化研究和地球系统模式研制、地理国情监测、可持续发展规划等都有着深远的影响[5]。土地覆盖分类是土地覆盖研究的重要组成部分,可以通过它理解土地的地表属性特征和区域属性。土地覆盖分类体系针对土地覆盖分类的特定需求而制定,实现了空间、时间和地物类型多种约束情形下的地物类型定义。

近年来,土地覆盖分类及其体系已成为研究热点。Yang等[6]从国家、区域、全球尺度入手,对土地覆盖分类体系的协调统一进行了系统性论述; 张景华等[7]详细展示了1970年以来的重要土地利用/土地覆盖(land use and land cover,LULC)分类体系; He等[8]对1990—2018年LULC的研究进行了整理分析; Pérez-Hoyos等[9]比较了部分全球土地覆盖数据集在农田监测上的应用情形; 岳健等[10]对我国土地利用分类的优劣进行了论证; 王人潮[11]对国内外土地分类进行了阐述; Deb等[12]讨论了LULC的分类技术; Wang等[13]提出了建立LULC体系的准则; 吕玉霞等[14]从土地利用碳排放估算的角度,建立了我国现有14项土地利用分类与联合国政府间气候变化专门委员会(Intergovernmental Pannel on Climate Change,IPCC)关于农林以及其他土地利用分类的对照映射关系; Fisher等[2]深入分析了土地利用和土地覆盖的关联性。

现有的研究从多角度总结分析了土地覆盖分类体系的进展,但缺乏从分类体系和数据产品入手对全球土地覆盖分类体系进行针对性的总结和系统性的对比分析研究。本文回顾并对比分析了20世纪70年代首先被应用于土地覆盖分类产品的美国国家地质调查局(United States Geological Survey,USGS)Anderson分类体系、80年代出现的环境信息协作计划(Coordination of Information on the Environment,CORINE)土地覆盖项目CLC分类体系、90年代出现的且目前应用非常广泛的国际地圈-生物圈计划(International Geosphere-Biosphere Programme,IGBP)全球土地覆盖分类体系和联合国粮农组织(Food and Agriculture Organization,FAO)于1997年建立的一个标准的土地覆盖分类体系(land cover classification system,LCCS),以及2010年后先后出现的30 m空间分辨率全球土地覆盖数据产品(global land cover mapping at 30 m resolution,GlobeLand30)、年度全球土地覆盖产品(annual global land cover,AGLC)、全球土地覆盖精细分辨率观测与监测数据(finer resolution observation and monitoring of global land cover,FROM-GLC)、Esri Sentinel-2 10 m土地覆盖时间序列(Esri Sentinel-2 10 m land cover time series, Esri 10 m Land Cover)和Dynamic World等分类体系,梳理总结了29项重要的相关土地覆盖数据产品,对比分析了不同体系之间的区别和联系,展示了它们之间语义一致性方面的差异,最后总结指出全球土地覆盖分类的一致性和多样性特点。

1 土地覆盖分类体系标准的进展

1.1 USGS Anderson 土地覆盖分类体系及相关分类体系、数据产品

USGS于1976年在James R. Anderson提出的土地分类体系基础上,提出了第一个专门用于遥感图像的土地覆盖分类体系(USGS Anderson),并研制了相应的数据产品。如表1所示,分类体系包含4级。其中,9个一级类和37个二级类适用于全国或全州范围,三级和四级类适用于区域性研究,可自由扩展。该分类体系兼顾土地利用状况和土地自然生态背景,没有明确区分土地覆盖和土地利用类型。LULC数据被编译用于 1∶25万(一级类)和1∶10万(二级类)比例尺的覆盖分类图。LULC数据源为矢量数据集,其中最小特征尺度约为10英亩(① 1英亩≈4 046.86 m2)[15-16]

表1   USGS Anderson土地覆盖分类体系

Tab.1  USGS Anderson land cover classification system

一级类二级类(编码+类型名)
编码类型名
1城镇或建成区(urban or built-up land)11住宅用地,12商服用地,13工业用地,14交通、通信和公共设施用地,15工商综合体,16城镇或建成区混合体,17其他城镇或建成区
2农业用地(agricultural land)21耕地和牧场,22果园、园林、葡萄园、苗圃和园艺用地,23圈养场,24其他农用地
3草地(rangeland)31草本草地,32灌木和灌丛草地,33混合草地
4林地(forest land)41落叶林地,42常绿林地,43混合林地
5水体(water)51河流和沟渠,52湖泊,53水库,54海湾和河口
6湿地(wetlands)61有林地覆盖的湿地,62无林地覆盖的湿地
7荒地(barren land)71干旱盐碱地,72海滩,73沙地(不包括海滩),74裸岩,75露天矿、采石场和采砂场,76过渡带,77混合荒地
8苔原(tundra)81灌木与灌丛苔原,82草本苔原,83裸地苔原,84湿苔原,85混合苔原
9冰川或永久积雪(perennial snow or ice)91永久积雪,92冰川

新窗口打开| 下载CSV


美国国家土地覆盖数据库(National Land Cover Database,NLCD)继承了USGS Anderson分类体系。如表2所示,该分类体系分为2个层级,是在USGS Anderson分类体系一、二级类的基础上派生而成。目前已经发布了六代NLCD产品,覆盖美国全境,不同产品的分类体系存在一定差异。其中最新的NLCD 2019共有8个一级类、20个二级类。NLCD 2019数据集提供2001年、2004年、2006年、2008年、2011年、2013年、2016年和2019年8个年度的数据产品,空间分辨率为 30 m,数据源为Landsat TM遥感影像[16-18]

表2   NLCD 2019美国国家土地覆盖分类体系

Tab.2  NLCD 2019 U.S. national land cover classification system

一级类(编码+类型名)二级类(编码+类型名)
1水体(water)11开阔水域,12永久冰川/积雪
2开发用地(developed)21已开发的、开放空间,22发达的、低强度的,23发达的、中等强度的,24发达的、高强度的
3贫瘠土地(barren)31贫瘠土地(裸岩/沙地/裸土)
4森林(forest)41落叶林,42常绿森林,43混交林
5灌丛地(shrubland)51矮生灌丛,52灌木/灌木丛
7草本植被(herbaceous)71草地/草本植物,72灌木/草本植物,73地衣,74苔藓
8种植/栽培地(planted/cultivated)81牧场/干草,82栽培作物
9湿地(wetlands)90有林湿地,95草洲

新窗口打开| 下载CSV


GeoCover LC全球土地覆盖数据由地球卫星公司(EarthSat)于2000年发布。如表3所示,该分类体系是在1976年USGS Anderson分类体系一级类的基础上进行了改进,共有13类。该分类产品的数据精度为28.5 m,数据年份1990年,覆盖范围为全球有Landsat影像覆盖的地区,数据源也是Landsat 数据[18-19]

表3   GeoCover LC全球土地覆盖分类体系

Tab.3  GeoCover LC global land cover classification system

编码类型名
1落叶林(forest, deciduous)
2常绿森林(forest, evergreen)
3灌木/灌木丛(shrub/scrub)
4草原(>10%地面覆盖)(grassland (>10% ground cover))
5贫瘠/极少植被(<10%地面覆盖)(barren/minimal vegetation (<10% ground cover))
6人造的其他城市建成地(man made-other, urban/built up)
7一般农业(agriculture, general)
8稻米/稻谷农业(agriculture rice/paddy)
9永久/草本湿地(wetland, permanent/herbaceous)
10红树林湿地(wetland, mangrove)
11水体(water)
12永久或几乎永久的冰和/或雪(permanent or nearly permanent ice and/or snow)
13云/云影/无数据(cloud/cloud shadow/no data)

新窗口打开| 下载CSV


1.2 CORINE土地覆盖项目CLC的分类体系及产品

1985年欧洲共同体启动了CORINE计划。作为该计划的一部分,CORINE 土地覆盖项目CLC提出的土地覆盖分类体系包含3级,共计5个一级类、15个二级类、44个三级类(表4)。相应的数据产品包括CLC 1990,CLC 2000,CLC 2006,CLC 2012和CLC 2018。数据空间分辨率为100 m(CLC 1990)或优于100 m(其他数据产品),数据产品的覆盖范围为欧洲环境署(European Environment Agency, EEA)成员和合作国家,数据源主要是Landsat和Sentinel遥感影像[20-22]

表4   CORINE CLC土地覆盖分类体系

Tab.4  CORINE CLC land cover classification system

一级类二级类三级类
1人工表面(artificial surfaces)1.1城镇建筑物1.1.1连续的城市结构,1.1.2不连续的城市结构
1.2工业、商业和交通运输用地1.2.1工业或商业单位,1.2.2公路和铁路网络及相关土地,1.2.3港口区,1.2.4机场
1.3矿山、垃圾场和建筑工地1.3.1矿物提取点,1.3.2垃圾场,1.3.3建筑工地
1.4人工非农业用地1.4.1绿色城市地区,1.4.2运动和休闲设施
2农业用地(agricultural areas)2.1耕地2.1.1非灌溉耕地,2.1.2永久灌溉土地,2.1.3稻田
2.2多年生作物2.2.1葡萄园,2.2.2果树和浆果种植园,2.2.3橄榄园
2.3牧场2.3.1牧草
2.4其他农业
用地
2.4.1与长期作物相关的一年生作物,2.4.2.复合栽培,2.4.3土地主要用于农业、自然植被面积很大,2.4.4农林区
3林地和半自然用地(forests and semi-natural areas)3.1林地3.1.1阔叶林,3.1.2针叶林,3.1.3混交林
3.2灌木或草本植物3.2.1自然草场,3.2.2沼泽和荒地,3.2.3硬叶植物,3.2.4过渡性林地灌木
3.3少植被或无植被覆盖的空地3.3.1海滩、沙丘和沙地或没有植被,3.3.2裸岩,3.3.3植被稀疏的地区,3.3.4烧毁区域,3.3.5冰川和永久的雪
4湿地(wetlands)4.1内陆湿地4.1.1内陆沼泽,4.1.2泥炭沼泽
4.2沿海湿地4.2.1盐沼,4.2.2盐碱地,4.2.3潮间带
5水体(water bodies)5.1内陆水体5.1.1水道,5.1.2水体
5.2海水5.2.1沿海潟湖,5.2.2河口,5.2.3海和洋

新窗口打开| 下载CSV


1.3 IGBP全球土地覆盖分类体系及相关分类体系、数据产品

由USGS、内布拉斯加大学林肯分校和欧盟委员会联合研究中心为IGBP研制的全球土地覆盖特征(global land cover characterization,GLCC)数据库,采用了IGBP的DISCover土地覆盖分类方案。该方案共确定了17 个类别(表5),包括11个自然植被类别、3个反映人类活动的类别和3个非植被类别。IGBP DISCover数据产品基于NOAA-AVHRR 遥感影像数据,利用全年12个月(1992 年4月—1993年3月)的影像合成数据,完成了全球土地覆盖分类,空间分辨率是1 km。IGBP DISCover和SiB Land Cover专题网格数据则每个都重采样为0.25°,0.5°和1.0°[22-23]

表5   IGBP和UMD全球土地覆盖分类体系

Tab.5  IGBP and UMD global land cover classification systems

编码
(IGBP)
类型名
IGBPUMD
0水体(water bodies)水体(water bodies)
1常绿针叶林(evergreen needleleaf forests)常绿针叶林(evergreen needleleaf forests)
2常绿阔叶林(evergreen broadleaf forests)常绿阔叶林(evergreen broadleaf forests)
3落叶针叶林(deciduous needleleaf forests)落叶针叶林(deciduous needleleaf forests)
4落叶阔叶林(deciduous broadleaf forests)落叶阔叶林(deciduous broadleaf forests)
5混交林(mixed forests)混交林(mixed forests)
6郁闭灌木林(closed shrublands)郁闭丛林或灌木林(closed bushlands or shrubland)
7稀疏灌木林(open shrublands)稀疏灌木林(open shrublands)
8有林草原(woody savannas)林地(woodlands)
9稀树草原(savannas)有林草原/灌木林(wooded grasslands/shrublands)
10草原(grasslands)草原(grasslands)
11永久湿地(permanent wetlands)
12农田(croplands)农田(croplands)
13城镇与建成区(urban and built-up)城镇与建成区(urban and built-up)
14农田/自然植被混合区(cropland natural vegetation mosaics)
15永久冰雪(snow and ice)
16裸地或稀疏植被(barren or sparsely vegetated)裸地(barren)

新窗口打开| 下载CSV


马里兰大学全球土地覆盖分类(university of Maryland global land cover classifications,UMD)由马里兰大学地理系于1998年研制(表5)。该分类体系包括14个土地覆盖类别,接近于IGBP分类体系,主要差异在于UMD去除了永久湿地、农田/自然植被混合区、永久冰雪。和IGBP DISCover相同,UMD数据源为AVHRR卫星(1992年4月—1993年3月),空间分辨率1 km。该数据产品被重新采样为0.25°,0.5°和1.0°的栅格[24-26]

IGBP分类体系广泛应用于以中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)遥感数据为基础的土地覆盖产品。全球土地覆盖产品MODIS IGBP土地覆盖数据集(Collection 4),采用MODIS数据生成2000—2001年的全球土地覆盖分类数据产品,其分类体系为17类的IGBP分类体系,分辨率为0.25°,0.5°和1°。

MODIS最新的全球土地覆盖产品为MODIS土地覆盖(Collection 6)(MCD12Q1和MCD12C1)。其中MCD12Q1(500 m)以年度间隔(2001—2020年)提供全球土地覆盖类型,提供基于IGBP、UMD、叶面积指数(leaf area index,LAI)、生物群落-生物地球化学循环(BIOME-biogeochemical cycles,BGC)、植物功能类型(plant functional type, PFT)和LCCS等分类体系的土地覆盖分类产品。MCD12C1(0.05°)以年度间隔(2001—2020 年)提供基于IGBP,UMD和LAI分类体系的土地覆盖分类产品。基于IGBP,UMD,LAI,BGC和PFT的分类体系如表6所示,分别有18,17,12,10和13个类别。基于LCCS的分类体系见1.4.2节[27]

表6   基于IGBP,UMD,LAI,BGC和PFT的MODIS土地覆盖分类体系

Tab.6  MODIS land cover classification system based on IGBP, UMD, LAI, BGC, PFT

IGBPUMDLAIBGCPFT
编码类型名编码类型名编码类型名编码类型名编码类型名
0/17水体(water bodies)0水体(water bodies)0水体(water bodies)0水体(water bodies)0水体(water bodies)
1常绿针叶林(evergreen needleleaf forests)1常绿针叶林(evergreen needleleaf forests)7常绿针叶林(evergreen needleleaf forests)1常绿针叶林(evergreen needleleaf forests)1常绿针叶林(evergreen needleleaf forests)
2常绿阔叶林(evergreen broadleaf forests)2常绿阔叶林(evergreen broadleaf forests)5常绿阔叶林(evergreen broadleaf forests)2常绿阔叶林(evergreen broadleaf forests)2常绿阔叶林(evergreen broadleaf forests)
3落叶针叶林(deciduous needleleaf forests)3落叶针叶林(deciduous needleleaf forests)8落叶针叶林(deciduous needleleaf forests)3落叶针叶林(deciduous needleleaf forests)3落叶针叶林(deciduous needleleaf forests)
4落叶阔叶林(deciduous broadleaf forests)4落叶阔叶林(deciduous broadleaf forests)6落叶阔叶林(deciduous broadleaf forests)4落叶阔叶林(deciduous broadleaf forests)4落叶阔叶林(deciduous broadleaf forests)
5混交林(mixed forests)5混交林(mixed forests)
2灌木林(shrublands)5灌木(shrub)
6郁闭灌木林(closed shrublands)6郁闭灌木林(closed shrublands)
7稀疏灌木林(open shrublands)7稀疏灌木林(open shrublands)
8有林草原(woody savannas)8有林草原(woody savannas)
9稀树草原(savannas)9稀树草原(savannas)4稀树草原(savannas)
10草原(grasslands)10草原(grasslands)1草原(grasslands)6草(grass)
5一年生阔叶植被(annual broadleaf vegetation)
6一年生草本植被(annual grass vegetation)
11永久湿地(permanent wetlands)11永久湿地(permanent wetlands)
12农田(croplands)12农田(croplands)
7谷物农田(cereal croplands)
3阔叶农田(broadleaf croplands)8阔叶农田(broadleaf croplands)
13城镇与建成区(urban and built-up lands)13城镇与建成区(urban and built-up lands)10城镇与建成区(urban and built-up lands)8城镇与建成区(urban and built-up lands)9城镇与建成区(urban and built-up lands)
14农田/自然植被混合区(cropland/natural vegetation mosaics)14农田/自然植被混合区(cropland/natural vegetation mosaics)
15永久冰雪(permanent snow and ice)10永久冰雪(permanent snow and ice)
16裸地(barren)15无植被土地(non-vegetated lands)9无植被土地(non-vegetated lands)7无植被土地(non-vegetated lands)11裸地(barren)
255无类别的(unclassified)255无类别的(unclassified)255无类别的(unclassified)255无类别的(unclassified)255无类别的(unclassified)

①“水体”地类在MCD12Q1数据产品中代码为17,在MCD12C1数据产品中代码为0。

新窗口打开| 下载CSV


1.4 FAO LCCS分类体系和基于LCCS的土地覆盖数据产品、体系

1.4.1 LCCS土地覆盖分类体系

FAO LCCS分类体系有2层: 首先采用二分法得到8种主要土地覆盖类型,如图1所示,而后采用定制的分类器及其组合进行后续的分层分类。这些分类器主要定义了环境属性和特定技术属性2层属性[28-29]

图1

图1   LCCS的体系框架设计(二分阶段)

Fig.1   Design of the system framework of LCCS (dichotomous phase)


LCCS分类体系作为先验分类体系,最大的优势在于其灵活性和兼容性,可以根据实际需求更改分类器,满足特定需要的精细化分类,可适用于不同比例尺的土地覆盖图,分类器支持进一步转换为地球系统模型所需的PFT分布,因此应用范围非常广泛,比如全球森林覆盖和土地利用动态观测土地分类体系(GOFC-GOLD land and forest cover classification system)提出土地覆盖图须采用通用分类体系,使用公认的土地覆盖语言进行开发和翻译,并推荐了LCCS[30]

1.4.2 基于LCCS的土地覆盖分类体系和数据产品

2000年全球土地覆盖(global land cover 2000,GLC2000)数据集由欧盟委员会联合研究中心于2003年发布。该数据集基于LCCS,共包括22种地类(表7)。GLC2000数据年份为2000年,分辨率为1 km,使用了SPOT4卫星VEGETATION观测载荷所获得的VEGA2000数据集。数据集包含全分辨率的全球土地覆盖数据集和合作伙伴制作的区域土地覆盖数据集[31]

表7   基于LCCS分类体系的GLC2000 土地覆盖分类体系

Tab.7  GLC2000 land cover classification system based on LCCS classification system

编码类型名
1树木覆盖,阔叶的,常绿的(tree cover, broadleaved, evergreen)
2树木覆盖,阔叶的,落叶的,郁闭的(tree cover, broadleaved, deciduous, closed)
3树木覆盖,阔叶的,落叶的,稀疏的(tree cover, broadleaved, deciduous, open)
4树木覆盖,针叶的,常绿的(tree cover, needle-leaved, evergreen)
5树木覆盖,针叶的,落叶的(tree cover, needle-leaved, deciduous)
6树木覆盖,混合叶型(tree cover, mixed leaf type)
7树木覆盖,经常被淹没,淡水和半咸水(tree cover, regularly flooded, fresh and brackish water)
8树木覆盖,经常被淹没,咸水(ree cover, regularly flooded, saline water)
9混合的:树木覆盖/其他自然植被(mosaic: tree cover/other natural vegetation)
10树木覆盖,烧毁的(tree cover, burnt)
11灌木覆盖,郁闭-稀疏,常绿的(shrub cover, closed-open, evergreen)
12灌木覆盖,密闭-稀疏,落叶的(shrub cover, closed-open, deciduous)
13草本植物覆盖,密闭-稀疏(herbaceous cover, closed-open)
14稀疏草本植被或稀疏灌木覆盖(sparse herbaceous or sparse shrub cover)
15经常淹没的灌木和/或草本植物覆盖(regularly flooded shrub and/or herbaceous cover)
16耕地和管护地(cultivated and managed areas)
17混合的:耕地/树木覆盖/其他自然植被(mosaic: cropland/tree cover/other natural vegetation)
18混合的:耕地/灌木或草地覆盖(mosaic: cropland/shrub or grass cover)
19裸地(bare areas)
20水体(water bodies)
21冰雪(snow and ice)
22人造表面和相关区域(artificial surfaces and associated areas)

新窗口打开| 下载CSV


国家测绘组织全球土地覆盖(the global land cover by National Mapping Organizations,GLCNMO)数据集是在国际制图指导委员会(International Steering Committee for Global Mapping,ISCGM)指导下由多个机构合作完成。该数据集的分类体系也是基于LCCS,共20个类别(表8)。所采用的影像数据为MODIS,产品包括2003(1 km分辨率)、2008(1 km分辨率)、2013(500 m分辨率)3个版本[32-34]

表8   基于LCCS分类体系的GLCNMO土地覆盖分类体系

Tab.8  GLCNMO land cover classification system based on LCCS classification system

编码类别名称
1阔叶常绿林(broadleaf evergreen forest)
2阔叶落叶林(broadleaf deciduous forest)
3针叶常绿林(needleleaf evergreen forest)
4针叶落叶林(needleleaf deciduous forest)
5混交林(mixed forest)
6疏林(tree open)
7灌木(shrub)
8草本(herbaceous)
9疏树/灌木草本(herbaceous with sparse tree/shrub)
10稀疏植被(sparse vegetation)
11农田(cropland)
12稻田(paddy field)
13农田/其他植被混合(cropland /other vegetation mosaic)
14红树林(mangrove)
15湿地(wetland)
16裸露区域,固结(砾石,岩石)(bare area, consolidated (gravel, rock))
17裸露区域,未固结(沙)(bare area, unconsolidated (sand))
18城市(urban)
19冰雪(snow/ice)
20水体(water bodies)

新窗口打开| 下载CSV


表6列出的MODIS最新的全球土地覆盖产品中,MCD12Q1(500 m)以年度间隔(2001—2020 年)提供了基于3层LCCS分类体系的土地覆盖分类产品[27],如表9所示,3种编码分别包含17,12和11类土地覆盖类型。

表9   基于LCCS的MODIS土地覆盖分类体系

Tab.9  MODIS land cover classification system based on LCCS

类别名编码
(LCCS1)
编码
(LCCS2)
编码
(LCCS3)
裸地(barren)111
永久冰雪(permanent snow and ice)222
水体(water bodies)333
城镇用地和建成区用地(urban and built-up lands)9
茂密的森林(dense forests)1010
常绿针叶林(evergreen needleleaf forests)11
常绿阔叶林(evergreen broadleaf forests)12
落叶针叶林(deciduous needleleaf forests)13
落叶阔叶林(deciduous broadleaf forests)14
阔叶/针叶混交林(mixed broadleaf/needleleaf forests)15
常绿/落叶阔叶混交林(mixed broadleaf evergreen/deciduous forests)16
开阔的森林(open forests)2020
开阔的森林(open forests)21
稀疏的森林(sparse forests)22
森林/农田混合区(forest/cropland mosaics)25
有林湿地(woody wetlands)27
天然草本(grasslands)3030
茂密的草本(dense herbaceous)31
稀疏草本(sparse herbaceous)32
天然草本/农田混合(natural herbaceous/croplands mosaics)35
草本耕地(herbaceous croplands)36
灌木丛地(shrublands)4040
茂密的灌木(dense shrublands)41
灌木/草原混合区(shrubland/grassland mosaics)42
稀疏的灌木(sparse shrublands)43
草本湿地(herbaceous wetlands)50
苔原(tundra)51
无类别的(unclassified)255255255

新窗口打开| 下载CSV


气候变化倡议土地覆盖项目(climate change initiative land cover,CCI-LC)是一个由欧洲空间局(European Environment Agency, ESA)制作的土地覆盖数据产品,先后由ESA的气候变化倡议(Climate Change Initiative, CCI)(2015年及以前)和欧盟委员会(European Commission, EC)哥白尼计划(2016年起)支持。该产品的分类体系基于LCCS,包括23个一级类和15个二级类(见表10)。数据年份为1992—2020年,空间分辨率300 m,源数据采用AVHRR HRPT,SPOT-Vegetation,PROBA-V和Sentinel-3等影像数据[35-36]

表10   基于LCCS分类体系的CCI-LC全球年度土地覆盖图分类体系

Tab.10  CCI-LC global annual land cover map classification system based on LCCS classification system

一级类(编码+地类)二级类(编码+地类)
0无数据(no data)
10耕地,雨水灌溉(cropland, rainfed)11草本植物覆盖; 12树叶或灌木覆盖
20耕地,灌溉的或洪水后的耕地(cropland, irrigated or postflooding)
30混合式耕地(>50%)/自然植被(树木、灌木、草本植物覆盖)(<50%)(mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%))
40混合式自然植被(树木、灌木、草本植物覆盖)(>50%)/耕地(<50%)(mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%))
50树木覆盖,阔叶树,常绿,郁闭至稀疏(>15%)(tree cover, broadleaved, evergreen, closed to open (>15%))
60树木覆盖,阔叶树,落叶树,郁闭至稀疏(>15%)(tree cover, broadleaved, deciduous, closed to open (>15%))61树木覆盖,阔叶树,落叶树,郁闭的(>40%); 62树木覆盖,阔叶树,落叶,稀疏的(15-40%)
70树木覆盖,针叶树,常绿,郁闭的(>40%)(tree cover, needleleaved, evergreen, closed to open (>15%))71树木覆盖,针叶树,常绿,郁闭的(>40%); 72树木覆盖,针叶树,落叶树,郁闭的(>40%)
80树木覆盖,针叶树,落叶树,郁闭至稀疏(>15%)(tree cover, needleleaved, deciduous, closed to open (>15%))81树木覆盖,针叶树,落叶树,郁闭的(>40%); 82树木覆盖,针叶,落叶树,稀疏的(15-40%)
90树木覆盖,混合叶子类型(阔叶和针叶)(tree cover, mixed leaf type (broadleaved and needleleaved))
100混合的树木和灌木(<>50%)/草本植物覆盖(<50%)(mosaic tree and shrub (>50%) / herbaceous cover (<50%))
110混合的草本植物覆盖率(>50%)/树木和灌木(<50%)(mosaic herbaceous cover (>50%) / tree and shrub (<50%))
120灌木丛地(shrubland)121常绿灌木丛地; 122落叶灌木丛地
130草地(grassland)
140地衣和苔藓(lichens and mosses)
150稀疏的植被(树木、灌木、草本植物覆盖)(<15%)(sparse vegetation (tree, shrub, herbaceous cover) (<15%))151稀疏的树(<15%); 152稀疏的灌木(<15%); 153稀疏的草本植物覆盖(<15%)
160树木覆盖,被淹没,淡水或半咸水(tree cover, flooded, fresh or brakish water)
170树木覆盖,被淹没,咸水(tree cover, flooded, saline water)
180灌木或草本植物覆盖,淹没,淡水/咸水/半咸水(shrub or herbaceous cover, flooded, fresh/saline/brakish water)
190城市地区(urban areas)
200裸露区城(bare areas)201固结的裸露区域; 202未固结的裸露区域
210水体(water bodies)
220永久性的冰雪(permanent snow and ice)

新窗口打开| 下载CSV


GlobCover全球土地覆盖项目发布的全球土地覆盖地图(global land cover map,GLCM)由ESA支持研制。该产品使用LCCS分类体系,共计22类(表11)。数据的空间分辨率为300 m,时间覆盖跨度为2005—2009年,数据源为ENVISAT MERIS载荷获得的影像数据[36-37]

表11   基于LCCS分类体系的GlobCover土地分类体系

Tab.11  GlobCoverland classification system based on LCCS classification system

编码类型名
11洪水后或灌溉后的耕地(post-floodin or irrigated croplands)
14雨水灌溉的耕地(rainfed croplands)
20混合耕地(50%~70%)/植被(草地、灌木丛、森林)(20%~50%)mosaic cropland (50%~70%) / vegetation (grassland, shrubland, forest) (20%~50%)
30混合植被(草地、灌丛、森林)(50%~70%)/耕地(20%~50%)(mosaic vegetation (grassland, shrubland, forest) (50%~70%) / cropland (20%~50%))
40郁闭到稀疏的(>15%)常绿阔叶林和/或半落叶林(>5 m)(closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5 m))
50郁闭的(>40%)阔叶落叶林(>5 m)(closed (>40%) broadleaved deciduous forest (>5 m))
60稀疏的(15%~40%)阔叶落叶林(>5 m)(open (15%~40%) broadleaved deciduous forest (>5 m))
70郁闭的(>40%)常绿针叶林(>5 m)(closed (>40%) needleleaved evergreen forest (>5 m))
90稀疏的(15%~40%)针叶落叶或常绿林(>5 m)(open (15%~40%) needleleaved deciduous or evergreen forest (>5 m))
100郁闭到稀疏(>15%)阔叶和针叶混交林(>5 m)(closed to open (>15%) mixed broadleaved and needleleaved forest (>5 m)
110混交林:灌丛(50%~70%)/草地(20%~50%)(mosaic forest/shrubland (50%~70%)/grassland (20%~50%))
120混交林:草原(50%~70%)/森林-灌丛(20%~50%)(mosaic grassland(50%~70%)/forest/shrubland (20%~50%))
130郁闭到稀疏(>15%)灌木丛(<5 m)(closed to open (>15%) shrubland (<5 m))
140郁闭到稀疏(>15%)草地(closed to open (>15%) grassland)
150稀疏(>15%)植被(木本植被、灌木、草地)(sparse (>15%) vegetation (woody vegetation, shrubs, grassland))
160郁闭(>40%)阔叶林经常被洪水淹没-淡水(closed (>40%) broadleaved forest regularly flooded - fresh water)
170郁闭(>40%)半落叶阔叶林和/或常绿阔叶林经常被洪水淹没-咸水(closed (>40%) broadleaved semi-deciduous and/or evergreen forest regularly flooded - saline water)
180郁闭至稀疏(> 15%)植被(草原,灌木地,木本植被)的定期泛滥或含水土壤-淡水,半咸水或盐水)(closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) on regularly flooded or waterlogged soil -fresh, brackish or saline water)
190人造表面和相关区域(城市区域>50%)(artificial surfaces and associated areas (urban areas >50%))
200裸地(bare areas)
210水体(water bodies)
220永久冰雪(permanent snow and ice)

新窗口打开| 下载CSV


哥白尼全球陆地服务(Copernicus global land service,CGLS)提供的全球土地覆盖图CGLS-LC100也采纳了LCCS分类体系,共计23个地类(表12)。数据跨度是2015—2019年,空间分辨率为100 m,数据源包括植被观测卫星PROBA-V 获得的100 m分辨率的卫星影像、高质量的土地覆盖训练样本数据和辅助数据集[38]

表12   基于LCCS分类体系的CGLS-LC100土地覆盖分类体系

Tab.12  CGLS-LC100 land cover classification system based on LCCS classification system

编码类型名
0没有可用输入数据
111郁闭的森林,常绿针叶林(closed forest, evergreen needle leaf)
113郁闭的森林,落叶针叶林(closed forest, deciduous needle leaf)
112郁闭的森林,常绿阔叶林(closed forest, evergreen, broad leaf)
114郁闭的森林,落叶阔叶林(closed forest, deciduous broad leaf)
115郁闭的森林,混交林(closed forest, mixed)
116郁闭的森林,未知(closed forest, unknown)
121稀疏的森林,常绿针叶林(open forest, evergreen needle leaf)
123稀疏的森林,落叶针叶林(open forest, deciduous needle leaf)
122稀疏的森林,常绿阔叶林(open forest, evergreen broad leaf)
124稀疏的森林,落叶阔叶林(open forest, deciduous broad leaf)
125稀疏的森林,混交林(open forest, mixed)
126稀疏的森林,未知(open forest, unknown)
20灌木(shrubs)
30草本植被(herbaceous vegetation)
90草本湿地(herbaceous wetland)
100苔藓及地衣植物(moss and lichen)
60裸地/稀疏植被(bare / sparse vegetation)
40种植和管护的植被/农业(耕地)(cultivated and managed vegetation/agriculture (cropland))
50城市/建成区(urban / built up)
70冰雪(snow & ice)
80永久性水体(permanent water bodies)
200开阔海域(open sea)

新窗口打开| 下载CSV


全球30 m地表覆盖精细分类产品(global land-cover product with fine classification system at 30 m,GLC_FCS30)是由中国科学院空天信息创新研究院刘良云研究员团队研发的。GLC_FCS30分类体系相比同分辨率数据产品类别更多样化。如表13所示,GLC_FCS30-2015分类体系共包括9个一级类、16个二级类(全球LCCS土地覆盖类型)和30个三级类(16个全球LCCS土地覆盖类型和14个详细的区域土地覆盖类型)。对应的数据产品为GLC_FCS30-2015,该数据的生产采用一种基于时空光谱库(SPECLib)的多时相分类方法[39]

表13   基于LCCS分类体系的GLC_FCS30-2015土地覆盖精细分类体系

Tab.13  GLC_FCS30 2015 land cover fine classification system based on LCCS classification system

0级分类体系LCCS分类体系精细分类体系
编码类型名编码类型名
农田(cropland)10雨养农田10雨养农田
11草本植被
12树木或灌木覆盖物(果园)
20灌溉农田20灌溉农田
森林(forest)50常绿阔叶林50常绿阔叶林
60落叶阔叶林60落叶阔叶林
61郁闭的落叶阔
叶林
62稀疏的落叶阔
叶林
70常绿针叶林70常绿针叶林
71郁闭的的常绿针叶林
72稀疏的常绿针叶林
80落叶针叶林80落叶针叶林
81郁闭的的落叶针叶林
82稀疏的落叶针叶林
90混交林90混交林
灌木丛(shrubland)120灌木丛120灌木丛
121常绿灌丛
122落叶灌丛
草原(grassland)130草原130草原
湿地(wetlands)180湿地180湿地
不透水面(impervious surfaces)190不透水面190不透水面
裸露区域(bare areas)140地衣和苔藓140地衣和苔藓
150稀疏植被150稀疏植被
152稀疏的灌丛
153稀疏的草本
覆盖
200裸露区域200裸露区域
201固结的裸露区域
202未固结的裸露区域
水体(water body)210水体210水体
永久冰雪(permanent ice and snow)220永久冰雪220永久冰雪

新窗口打开| 下载CSV


相比GLC_FCS30-2015的16个全球LCCS土地覆盖类型,GLC_FCS30-2020土地覆盖精细分类体系提供了一个含30种土地覆盖类型的全球30 m土地覆盖分类体系(表14)。GLC_FCS30-2020土地覆盖数据产品采用GLC_FCS30-2020分类体系, 进一步提高了3种典型土地覆盖类型(不透水表面、水体和耕地)的分类性能,并且改善了不连续空间转换的数量较少的问题[40]。GLC_FCS30-1985_2020产品同样采用GLC_FCS30-2020土地覆盖分类体系,提出了耦合变化检测和动态更新的土地覆盖动态监测的自动化方案,利用 1984—2020 年所有Landsat卫星数据,实现了从1985—2020年以5 a为周期的30 m分辨率数据产品的生产。

表14   基于LCCS分类体系的GLC_FCS30-2020土地覆盖精细分类体系

Tab.14  GLC_FCS30-2020 land cover fine classification system based on LCCS classification system

编码精细分类体系
10雨养农田(rainfed cropland)
11草本植被(herbaceous cover)
12树木或灌木覆盖物(果园)(tree or shrub cover (orchard))
20灌溉农田(irrigated cropland)
51稀疏的常绿阔叶林(open evergreen broadleaved forest)
52郁闭的常绿阔叶林(closed evergreen broadleaved forest)
61稀疏的落叶阔叶林(open deciduous broadleaved forest)
62郁闭的落叶阔叶林(closed deciduous broadleaved forest)
71稀疏的常绿针叶林(open evergreen needle-leaved forest)
72郁闭的常绿针叶林(closed evergreen needle-leaved forest)
81稀疏的落叶针叶林(open deciduous needle-leaved forest)
82郁闭的落叶针叶林(closed deciduous needle-leaved forest)
91稀疏的混交林(阔叶和针叶)(open mixed leaf forest (broadleaved and needle-leaved))
92郁闭的混交林(阔叶和针叶)(closed mixed leaf forest (broadleaved and needle-leaved))
120灌木丛(shrubland)
121常绿灌丛(evergreen shrubland)
122落叶灌丛(deciduous shrubland)
130草原(grassland)
140地衣和苔藓(lichens and mosses)
150稀疏植被(sparse vegetation)
152稀疏的灌丛(sparse shrubland)
153稀疏的草本覆盖(sparse herbaceous)
180湿地(wetlands)
190不透水面(impervious surfaces)
200裸露区域(bare areas)
201固结的裸露区域(consolidated bare areas)
202未固结的裸露区域(unconsolidated bare areas)
210水体(water body)
220永久冰雪(permanent ice and snow)
250填充值(filled value)

新窗口打开| 下载CSV


“iMap World 1.0”由清华大学宫鹏教授团队于2021年发布,提供了世界上首套1985—2020年全球30 m逐日无缝数据立方体, 完成了首套1985—2020年全球逐年逐季节土地覆盖制图,填补了大规模高频率、无缝遥感制图的空白。该产品提供了2种分类体系。其中,FROM-GLC分类体系有10个一级类和29个二级类,见1.6节相关表格,LCCS分类体系(参考GLC2000)有8个一级类和32个二级类(表15),在原先分类体系的基础上均有一定的优化[40-41]

表15   基于LCCS分类体系的iMap World 1.0土地覆盖制图分类体系

Tab.15  iMap World 1.0 land cover mapping classification system based on LCCS classification system

一级类(编码+地类)二级类(编码+地类)
10耕地和管理地(cultivated and managed areas)10耕地和管理地
20树(tree)21常绿阔叶
22落叶阔叶,郁闭,有叶
23落叶阔叶,郁闭,落叶
24落叶阔叶,稀疏,有叶
25落叶阔叶,稀疏,落叶
26常绿针叶
27落叶针叶,有叶
28落叶针叶,落叶
29混合叶型,有叶
30混叶型,落叶
31树木覆盖,烧毁(tree cover, burnt)31树木覆盖,烧毁
40灌木或草本覆盖(shrub cover or herbaceous)41常绿灌木
42落叶灌木
43落叶灌木
44草本,有叶
45草本,落叶
50湿地(wetland)51树木覆盖,定期淹没,淡水和半咸水
52树木覆盖,定期淹没,咸水
53经常被淹的灌木和/或草本覆盖,有叶
54经常被淹的灌木和/或草本覆盖,落叶
60混合的植被(mosaic-vegetation)61树木/其他自然植被
62作物/树木/其他自然植被
63作物/灌木或草本
64落叶植被
65作物/树木/其他自然植被,落叶
66作物/灌木或草本,落叶
70非植被(non-vegetation)71裸露区域
72水体
73人造表面和相关区域
74冰雪
80稀疏草本或稀疏灌木覆盖(sparse herbaceous or sparse shrub cover)80稀疏草本或稀疏灌木覆盖

新窗口打开| 下载CSV


WorldCover项目于2017年由ESA启动,目前提供了2020年和2021年2个年份的10 m分辨率的全球土地覆盖产品。如表16所示,WorldCover产品包含了11种土地覆盖类型,与LCCS分类编码保持一致。数据产品的空间分辨率10 m,数据源主要包含Sentinel-1和Sentinel-2影像数据[42]

表16   基于LCCS分类体系的WorldCover 10 m土地覆盖分类体系

Tab.16  WorldCover 10 m land cover classification system based on LCCS classification system

编码土地覆盖类型
10树木覆盖(tree cover)
20灌木(shrubland)
30草地(grassland)
40农田(cropland)
50建成区(built-up)
60裸地/稀疏植被(bare / sparse vegetation)
70冰雪(snow and ice)
80永久性水体(permanent water bodies)
90草本湿地(herbaceous wetland)
95红树林(mangroves)
100苔藓及地衣植物(moss and lichen)

新窗口打开| 下载CSV


全球土地覆盖共享(global land cover-share,GLC-SHARE)产品是由FAO于2014年发布。产品采纳了LCCS标准,实现了多套高分辨率土地覆盖数据的整合。如表17所示,GLC-SHARE提供了11个聚合土地覆盖类型,在兼容原始类型的基础上,归类为更基础的类型定义,并尽可能保持了不同土地覆盖数据产品的一致性[43]。该数据的空间分辨率为30″(约1 km)。

表17   基于LCCS分类体系的GLC-SHARE全球土地覆盖汇总类别

Tab.17  GLC-SHARE global land cover summary categories based on LCCS classification system

编码类型
01人工地表(artificial surfaces)
02耕地(cropland)
03草地(grassland)
04树木覆盖区(tree covered areas)
05灌木覆盖区(shrubs covered areas)
06草木植被、水生或定期淹没(herbaceous vegetation, aquatic or regularly flooded)
07红树林(mangroves)
08稀疏植被(sparse vegetation)
09裸土(baresoil)
10雪和冰川(snow and glaciers)
11水体(water bodies)

新窗口打开| 下载CSV


GeoWiki Hybrid全球混合土地覆盖数据产品由隶属于国际应用系统分析研究所的Geo-Wiki于2014年发布。产品以2005年为基准年制作,其分类体系是基于LCCS分类体系,包含10种土地覆盖类别(表18)。该产品的空间分辨率30 m,使用 GLC2000,MODISLC 和 GlobCover 作为输入数据,主要采用了地理加权回归(geographically weighted regression,GWR)方法,并采用了Geo-Wiki众包验证数据进行验证[9,44-46]

表18   基于LCCS的GeoWiki Hybrid土地覆盖分类体系

Tab.18  GeoWiki Hybrid land cover classification system based on LCCS

编码类别
1树木覆盖(tree cover)
2灌木覆盖(shrub cover)
3草本植被/草地(herbaceous vegetation/grassland)
4栽培和管理的植被(cultivated and managed)
5栽培和管理/自然植被的镶嵌(mosaic of cultivated and managed/natural vegetation)
6洪泛/湿地(flooded/wetland)
7城市(urban)
8雪和冰(snow and ice)
9裸地(barren)
10地表水(open water)

新窗口打开| 下载CSV


1.5 GlobeLand30和AGLC全球土地覆盖分类体系及数据产品

GlobeLand30由国家基础地理信息中心陈军院士团队研发。如表19所示,该数据产品的分类体系共包括10个一级类型,其中苔原一级类型有4个二级类型。采用的原始影像数据主要包括Landsat,HJ-1和GF-1遥感影像。2014年发布GlobeLand30 2000和2010版,2019年发布GlobeLand30 2020版,分辨率均为30 m[9,47]

表19   GlobeLand30土地覆盖分类体系

Tab.19  GlobeLand30 land cover classification system

编码类型
10耕地(cultivated land)
20林地(forest)
30草地(grassland)
40灌木地(shrubland)
50湿地(wetland)
60水体(water bodies)
70苔原(4个亚类型: 71灌木苔原、72禾本苔原、73湿苔原与74裸地苔原)(tundra)
80人造地表(artificial surfaces)
90裸地(bare land)
100冰川和永久积雪(permanent snow and ice)

新窗口打开| 下载CSV


AGLC 2010—2015是中山大学刘小平教授团队于2021年发布的全球30 m分辨率全球土地覆盖变化数据集。如表20所示,参考现有的GlobeLand30土地覆盖分类体系,AGLC制定了10种类型的土地覆盖分类体系。中山大学基于谷歌地球引擎(Google Earth Engine, GEE)平台,综合使用FROM-GLC,Globeland30和GLC-FCS30等分类数据产品,时间覆盖为2000—2015年。该产品采用了多源数据融合、时序变化检测和机器学习等方法,数据精度得到显著提升[48]

表20   AGLC土地覆盖分类体系

Tab.20  AGLC land cover classification system

编码类型
10耕地(cultivated land)
20林地(forest)
30草地(grassland)
40灌木地(shrubland)
50湿地(wetland)
60水体(water bodies)
70苔原(tundra)
80不透水面(artificial surfaces)
90裸地(bare land)
100永久冰雪(permanent snow and ice)

新窗口打开| 下载CSV


1.6 FROM-GLC系列产品和基于FROM-GLC产品的土地覆盖分类体系

FROM-GLC是清华大学地球系统科学系宫鹏教授团队研制的一套高分辨率全球土地覆盖图,包括FROM-GLC30,FROM-GLC10,FROM-GLC-seg和FROM-GLC-agg等。

表21所示,FROM-GLC 2010分类体系定义包含 11个一级类和27个二级类。这些类别定义可以映射到FAO LCCS和 IGBP分类体系。FROM-GLC30数据集的2010年版本采用该分类体系,该数据集的生产使用了Landsat TM和ETM+影像数据,也参考了基于TM/ETM+光谱曲线库、2010年全年MODIS时间序列以及Google Earth高分辨率图像和实地照片[49]

表21   FROM-GLC 2010土地覆盖分类体系

Tab.21  FROM-GLC 2010 land cover classification system

一级类(编码+地类)二级类(编码+地类)
10农地(croplands)11水稻田,12温室,13其他农地
20森林(forest)21阔叶林,22针叶林,23混交林,24果园
30草地(grasslands)31牧草地,32其他草地
40灌丛(shurblands)
50湿地(wetland)51沼泽地,52泥滩
60水体(waterbodies)61湖,62水库/池塘,63河流,64海洋
70苔原(tundra)71灌丛和灌丛苔原(= 40灌丛),72草本苔原
80不透水面(impervious)81不透水层-高反照率,82不透水层-低反照率
90裸地(barren land)91干盐滩,92沙区,93裸露的岩石,94裸露的草本耕地,95干湖/河床,96其他荒地
100冰雪(snow and ice)101雪,102冰
999云(cloud)

新窗口打开| 下载CSV


表22所示,FROM-GLC 2015分类体系定义包含11个一级类别和23个二级类别。这些类别定义可以映射到FAO LCCS和 IGBP分类体系。FROM-GLC30数据集的2015年版本采用该分类体系,分类数据包含Landsat5/7/8、中国高分卫星、资源卫星、环境卫星和SRTM地形数据等。

表22   FROM-GLC 2015土地覆盖分类体系

Tab.22  FROM-GLC 2015 land cover classification system

一级类(编码+地类)二级类(编码+地类)
10农地(cropland)11水稻田; 12温室; 13其他农地; 14果园; 15裸农地
20森林(forest)21阔叶,有叶; 22阔叶,落叶; 23针叶,有叶; 24针叶,落叶; 25混交,有叶; 26混交,落叶
30草地(grassland)31牧草地; 32自然草地; 33自然草地,落叶
40灌丛(shrubland)41灌丛,有叶; 42灌丛,落叶
50湿地(wetland)51沼泽地,有叶; 52泥滩; 53沼泽地,落叶
60水体(water)
70苔原(tundra)71灌丛苔原; 72草本苔原
80不透水面(impervious surface)
90裸地(bareland)
100冰雪(snow/ice)101雪; 102冰
120云(cloud)

新窗口打开| 下载CSV


表23所示,FROM-GLC 2017分类体系定义包含10个类别,FROM-GLC30数据集的2017年版本采用该分类体系,分类数据包含Landsat8影像、全球数字高程模型(digital elevation model,DEM)数据、MOD13Q1产品等。FROM-GLC10数据集也采用该分类体系,它是首套第一个10 m分辨率的全球土地覆盖产品,采用了样本迁移的办法,复用了2015年收集的30 m分辨率样本集,利用了Sentinel-2影像数据和GEE编程环境[50]

表23   FROM-GLC 2017土地覆盖分类体系

Tab.23  FROM-GLC 2017 land cover classification system

编码
(FROM-GLC30)
编码
(FROM-GLC10)
地类
110农地(cropland)
220森林(forests)
330草地(grasslands)
440灌丛(shrublands)
550湿地(wetland)
660水体(water)
770苔原(tundra)
880不透水面(impervious)
990裸地(barelands)
10100冰雪(snow/ice)

新窗口打开| 下载CSV


FROM-GLC-seg土地覆盖分类体系在基本遵循FROM-GLC 2010土地覆盖分类体系的基础上,稍作修改,去除湿地、苔原、不透水面、云4个一级类,共有7个一级类和25个二级类(表24)。FROM-GLC-seg的数据年份是2010年,采用一种分割方法整合多分辨率数据集(主要包含: LandsatTM/ETM+,MODIS EVI,Bioclimatic variables,global DEM,Soil-water variables),空间分辨率为30 m[51]

表24   FROM-GLC-seg土地覆盖分类体系

Tab.24  FROM-GLC-seg land cover classification system

一级类二级类
农地(cropland)水稻田,温室,其他农地
森林(forest)阔叶林,针叶林,混交林,果园
草地(grassland)人工,自然,湿地-草原,苔原-草原
灌丛(shrubland)灌丛,苔原-灌丛
水体(water)湖,池塘,河流,海洋
裸地(bareland)碱土,沙,岩石,裸露的耕地,河床,其他裸地
冰雪(snow/ice)雪,冰

新窗口打开| 下载CSV


FROM-GLC-agg土地覆盖分类体系相比FROM-GLC 2010土地覆盖分类体系,去除了湿地和苔原2个一级类,共有9个一级类和25个二级类(表25)。FROM-GLC-agg的数据年份也是2010年通过聚合FROM-GLC和FROM-GLC-seg以及2个粗分辨率不透水图制成,空间分辨率也是30 m[52]

表25   FROM-GLC-agg土地覆盖分类体系

Tab.25  FROM-GLC-agg land cover classification system

一级类二级类
农地(cropland)水稻田,温室,其他农地
森林(forests)阔叶林,针叶林,混交林,果园
草地(grasslands)人工,自然,湿地-草原,苔原-草原
灌丛(shrublands)灌丛,苔原-灌丛
水体(water)陆地水,海水
不透水面(impervious)高反照率,低反照率
裸地(barelands)碱土,沙,岩石,裸露的耕地,河床,其他裸地
冰雪(snow/ice)雪,冰
云(cloud)

新窗口打开| 下载CSV


全球陆地表面卫星全球土地覆盖数据产品(global land surface satellite global land cover,GLASS-GLC)由清华大学宫鹏教授团队研制,包含1982—2015年共计34 a时间跨度的全球陆地表面土地覆盖数据。如表26所示,该产品的分类体系包含7个地类。该产品的空间分辨率是5 km,采用了多套GLASS-CDR数据产品[53]

表26   基于FROM-GLC第二版分类体系的GLASS-GLC土地覆盖分类体系

Tab.26  GLASS-GLC land cover classification system based on FROM-GLC version 2 classification system

类别子类别
农田(cropland)稻田,温室,其他农田,果园,裸地
森林(forest)阔叶树、有叶,阔叶树、落叶,针叶树、有叶,针叶树、落叶,混交树种、有叶,混交树种、落叶
草地(grassland)牧场、有叶,天然草地、有叶,草原、有叶
灌丛(shrubland)灌木、有叶,灌木、落叶
苔原(tundra)灌丛和矮树苔原,草本苔原
荒地(barren land)荒地
冰雪(snow/ice)雪,冰

新窗口打开| 下载CSV


“iMap World 1.0”提供了LCCS分类体系(表14)和FROM-GLC分类体系(表27)2种分类体系。其中,基于FROM-GLC分类体系的产品包含10个一级类和29个二级类[40]

表27   基于FROM-GLC分类体系的iMap World 1.0土地覆盖制图分类体系

Tab.27  iMap World 1.0 land cover mapping classification system based on the FROM-GLC classification system

一级类(编码+地类)二级类(编码+地类)
10农地(cropland)11水稻田,12温室,13其他农地,14果园,15裸农地
20森林(forest)21阔叶、有叶, 22阔叶、落叶,23针叶、有叶,24针叶、落叶,25混交、有叶,
26混交、落叶
30草地(grassland)31牧草地、有叶,32自然草地、有叶,
33自然草地、落叶
40灌丛(shrublands)41灌丛、有叶,42灌丛、落叶
50湿地(wetland)51沼泽地、有叶,52泥滩,53沼泽地、
落叶
60水体(water body)61湖,62水库/池塘,63河流,64海洋
70苔原(tundra)71灌丛和灌丛苔原,72草本苔原
80不透水面(impervious)80不透水层
90裸地(barren
land)
90裸地
100冰雪(snow/ice)101雪,102冰

新窗口打开| 下载CSV


1.7 Esri 10 m Land Cover时间序列数据产品及分类体系

Esri 10 m Land Cover数据产品由Impact Observatory,Microsoft和Esri研制,于2023年3月发布最新版本,是2017—2022年全球土地覆盖时间序列数据产品。如表28所示,该产品共包含9个土地覆盖类别。该数据产品使用超过50亿个人工标记图像像素的海量训练数据集,采用了深度学习的土地覆盖分类模型[54]

表28   Esri 10 m Land Cover分类体系

Tab.28  Esri 10 m land cover classification system

编码类型
1水体(water)
2树木(trees)
4被淹没的植被(flooded vegetation)
5作物(crops)
7建成区(built area)
8裸地(bare ground)
9冰雪(snow/ice)
10云(clouds)
11天然草地(rangeland)

新窗口打开| 下载CSV


1.8 Dynamic World全球土地利用土地覆盖制图及分类体系

Dynamic World于2022年6月由Google和World Resources Institute研制。如表29所示,该数据产品的分类体系共9类。之前介绍的全球土地覆盖产品往往是年度产品,每年生成一期,而Dynamic World采用深度学习等新型的方法,能够生产全球一致、高分辨率、近实时的土地利用土地覆盖分类。采用的遥感影像为2015年6月27日之后的 Sentinel-2卫星图像,数据分辨率10 m,卫星重访频率在2~5 d之间不等,去云后数据更新频率约为5~10 d[55]

表29   Dynamic World分类体系

Tab.29  Dynamic World classification system

编码LULC类型
0水(water)
1树木(trees)
2草(grass)
3被淹没的植被(flooded vegetation)
4作物(crops)
5灌木和灌丛(shrub and scrub)
6建成区(built area)
7裸露的地面(bare ground)
8冰雪(snow and ice)

新窗口打开| 下载CSV


2 讨论

2.1 土地覆盖分类体系精细程度以及分类体系、空间分辨率、空间尺度的关系

按照数据产品的空间分辨率(同数据产品空间分辨率不同,按照最高的为准)的降序排列(分辨率低的在前,分辨率高的在后),汇总了本文调研的29个不同的土地覆盖分类体系(表30),列举分类体系名称、对应的分类产品名称、类别总数量、数据对应的年份、空间覆盖范围信息。其中“类别总数量”的表达方式包含几种类型: 单独的数字表示该分类体系只有一个级别; “+”用来区分同一分类体系不同级别的类别数量; “,”用来区分同种分类产品不同分类体系的情况,和表格第二列“分类体系”对应。

表30   土地覆盖分类体系汇总

Tab.30  Summary of land cover classification systems

最高空间
分辨率/m
分类体系分类产品类别总数量数据对应时间空间覆
盖范围
5 000FROM-GLCGLASS-GLC71982—2015全球
1 000IGBPDISCover171992年4月—1993年3月全球
1 000IGBPUMD141992年4月—1993年3月全球
1 000LCCSGLC2000222000全球
1 000LCCSGLC-SHARE112013全球
500LCCSGLCNMO202003(1km),2008(1km),2013全球
500IGBP,UMD,LAI,BGC,PFT,LCCSMCD12Q118,17,12,10,13,17/12/112001—2020全球
500IGBP,UMD,LAIMCD12C118,17,122001—2020全球
300LCCSCCI-LC23+151992—2020全球
300LCCSGlobCover222005—2009全球
100CORINECLC5+15+441990,2000,2006,2012,2018欧洲部分区域
100LCCSCGLS-LC100232015—2019全球
30LCCSGLC_FCS30-20159+16+302015全球
30LCCSGLC_FCS30-2020/GLC_FCS30-1985-2020302020/1985—2020全球
30LCCSGeoWiki Hybrid102005全球
30LCCS,FROM-GLCiMap World 1.08+33,10+291985—2020全球
30GlobeLand30GlobeLand3010+4(苔原)2000,2010,2020全球
30AGLCAGLC-2000-2015102010—2015全球
30FROM-GLCFROM-GLC30 (2010)11+272010全球
30FROM-GLCFROM-GLC30 (2015)11+232015全球
30FROM-GLCFROM-GLC30 (2017)102017全球
30FROM-GLCFROM-GLC-seg7+272010全球
30FROM-GLCFROM-GLC-agg9+252010全球
30USGSNLCD 20198+202001,2004,2006,2008,2011,2013,2016,2019美国
28.5USGSGeoCover LC131990全球部分地区
10FROM-GLCFROM-GLC10102017全球
10LCCSWorldCover 10 m112020,2021全球
10Esri 10m Land CoverEsri 10m Land Cover92017—2021全球
10Dynamic WorldDynamic World92015年后(每2~5 d)全球

新窗口打开| 下载CSV


表30可以看出,目前已有的全球土地覆盖分类数据产品分辨率处于10~5 000 m范围,且呈现出明显的地表分辨率精细化的发展趋势。在区域制图方面,清华大学和商汤科技合作完成全国区域3 m土地覆盖制图[56],中国地质大学(武汉)和武汉大学完成了中国1 m分辨率国家级土地覆盖图SinoLC-1[57],北卡罗来纳大学完成了北美UrbanWatch 1 m土地覆盖制图[58],中山大学实现了中国34个城市1 m精细化绿地制图[59],哥本哈根大学完成0.5 m树冠参数制图[60]。未来随着样本数据、分类算法和计算算力的增强,大范围的土地覆盖分类数据产品的地面分辨率还将有进一步的提升。

分类体系的精细程度既受到所采用的影像数据和多源数据对地物特征的分辨和表达能力的制约,也和采用的技术路线直接相关。比如,100 m或者更粗分辨率的土地覆盖产品的分类类别数目多集中在10~25类之间,30 m分辨率的全球土地覆盖数据产品分类类别数集中在20~30类之间,而10 m全球土地覆盖产品分类类别多集中在9~11类。值得注意的是,全球土地覆盖数据产品中,精细分类程度较高的数据产品普遍采用LCCS和FROM-GLC分类体系。这2种分类体系,在精细化分类方面有明显的优势,更适合精细化分类需求。本文的调研主要集中在全球土地覆盖分类体系和产品,如果制图范围缩小为区域尺度,则分类体系往往具有很高的分类精细程度,比如CORINE CLC分类体系和产品实现了“5+15+44”的三级分类体系,分类精细程度位居所有分类体系之首。事实上,高分辨率全球土地覆盖信息产品面临着明显的技术挑战,包括严重的全球“同物异谱/异物同谱”现象、影像分类提取和变化检测算法能力不足、单期高精度和多期时空一致性的实现困难、训练数据不充足、卫星数据成本高、高性能计算设施的保障不足等[3,39,50]。这些都决定了实现超大区域的精细分类存在明显的难度。

2.2 分类体系之间的语义一致性

目前的多种分类体系之间存在6种语义一致性不足的现象:

1)不同分类体系的细化逻辑差异明显。比如,LCCS分类体系采用先二分分类,将土地覆盖类型定义为8大类,再根据需要进一步适当细分,采用1—3级不等的分类体系[28-29]。FROM-GLC 2010分类体系将地表类型的性状(trait)、生命形态(life form)和结构(structural)数据作为构建完整分类体系的基本构件,将同一个土地覆盖类型分解为4个类型的端元(end-component),即覆盖类型(cover type)、生命形态或PFT、冠层或郁闭度、高度。在此基础上,提出了基于土地覆盖端元信息的分类方案[49]

2)同一个分类基准和类别的精细子类之间的一致性不足。以FAO LCCS土地覆盖分类体系为例,本文调研的全球地表覆盖数据中有11套数据产品都使用该体系作为基准。不同产品中的同种类型可以有相同的LCCS编码,便于数据的对比和使用[28-29]。然而,不同产品间的分类体系的语义一致性并不是必选项,先后形成了一些异质的精细分类。比如,灌木类型在不同的基于LCCS的分类体系间存在明显差异: 在GLC2000分类体系中,灌木出现在5个土地覆盖类型中,其中有2个为单一灌木覆盖(非混合地类)的细分类型[31]; 在GLCNMO分类体系中,灌木被分为2类,其中有1个为单一灌木覆盖的细分类型[32-34]; 在GLC_FCS30分类体系中,将灌木丛作为0级类,再精细分类为3类。这种相同的土地覆盖类型的精细子类间的语义一致性不足的情形非常明显[35-36]

3)相同土地覆盖类型的名称一致性不足。由于术语标准化水平不足和同义词的存在,不同分类体系存在采用同义或者近义词表征相同类型的情形。例如在IGBP分类体系中的“常绿阔叶林(evergreen broadleaf forest)”可以对应GLC2000分类体系中的“树木覆盖,阔叶的,常绿的(tree cover, broadleaved, evergreen)”类型。这种现象带来了一定程度的语言混淆,造成数据理解的障碍,也为计算机可理解、可自动化的信息融合提取带来新的困难。针对此现象,LCCS分类体系开发了一个协作翻译模块,能够把LCCS作为参考基准,对相关的土地覆盖分类体系进行比较和关联[6,28-29]

4)相同名称土地覆盖类型的定义一致性不足。例如,稀疏森林(open forests)的定义在不同产品中并不一致: MCD12Q1数据产品的LCCS1分类体系中定义为“30%~60%的森林覆盖”,LCCS2分类体系中定义为“10%~60%的森林覆盖”[23]。再比如,IGBP 系统指定高度低于2 m的木本植物被归类为灌木,而GLC2000中的高度限制增加到3 m,GlobCover分类系统中的高度限制增加到5 m[49]。这种定义不一致性为多种土地覆盖产品的比对和融合都带来明显的障碍。

5)同名称同定义分类类别的代码一致性不足。由于LCCS分类体系内部有统一的地类代码,但各大类分类体系之间没有代码共用,因此在大类不同的分类体系之间,普遍出现代码不一致现象[29-30]。如水体(water)地类,各分类体系定义基本一致,但是在USGS Anderson分类体系中代码为5[15-16],在IGBP分类体系为17[23-24],在GLC2000分类体系中为20[31],在FROM-GLC2013分类体系中为60[49]

6)不同土地覆盖产品在是否含有土地利用类型方面存在不一致性。土地覆盖是在地球表面观察到的(生物)物理覆盖,而土地利用是人们为生产而改变或维持某种土地覆盖类型所进行的安排、活动和投入[59]。全球或地区的土地分类体系主要以土地覆盖为主,但也有一部分兼有土地覆盖和土地利用分类体系[2,7]。例如,IGBP,UMD和LCCS等都只包含土地覆盖分类体系,而USGS Anderson,NLCD,CLC和FROM-GLC等同时包含土地覆盖和土地利用的分类。比如USGS Anderson土地覆盖分类体系中,一级类土地覆盖类型“水体”下,二级类包括“溪流和运河”、“湖泊”、“海湾”和“河口”等土地覆盖类型和“水库”土地利用类型[15-16]

分类体系间不一致现象产生的原因主要是制图的理念和需求不同、采用的方法和依赖的基础数据各异等。多种不一致现象给数据产品的理解、分析、对比和融合带来了新的困难,对领域的发展也在一定程度上产生了制约作用。

3 总结

近年来土地覆盖数据产品呈现出全球化和区域化并存、分类精细程度高、产品精度高、时间间隔和空间分辨率更加细致的趋势。这些全球地表覆盖数据产品针对不同的应用需求,采用1—3级数量不等的分类体系,实现了空间分辨率从10~5 000 m不等的地表覆盖分类。全球土地覆盖分类体系呈现出以LCCS开放体系为主、FROM-GLC和USGS等多种分类体系并存发展的趋势。

另一方面,由于在理念、需求、方法和基础数据等方面的差异,现有全球土地覆盖分类体系也存在明显的语义不一致性。多种分类体系之间存在诸多语义冲突,目前没有很好的分类体系标准化和兼容性解决方案,也没有统一的类别代码,为数据产品的理解、分析、对比和融合带来了新的困难,也给数据的产品比较、共享、转换带来了一定的挑战。目前已有土地覆盖分类相关的多个国际标准规范。比如,ISO地理信息技术委员会(TC 211)的19144系列标准目前涵盖了分类系统结构、土地覆盖分类元描述语言、土地利用分类元语言等方面。此外,19152系列标准聚焦土地管理领域模型,包括通用概念模型、陆地领域土地登记、海洋领域属地管理、估价、空间规划等不同的方面。这些规范有望为土地覆盖分类体系的标准化和兼容性解决方案提供支持。

土地覆盖数据产品作为一种基础的共性数据集,未来还需要更多的领域协调和自治,国际组织、国家政府、科研机构尚需通力合作,在科学性、系统性和兼容性的土地覆盖分类体系设计,以及土地覆盖数据产品的可发现、可访问、可互操作和可重用方面进一步提出解决方案。

附录

本附录主要包含本文相关的各土地覆盖数据产品的下载链接(顺序同表30)。

附表1   本文相关的各土地覆盖数据产品的下载链接

Appendix Tab.1  Download links for each land cover data product relevant to this paper

序号数据产品下载链接
1GLASS-GLChttps://doi.org/10.1594/PANGAEA.913496
2DISCoverhttps://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=930
3UMDhttps://www.qgistutorials.com/en/docs/open_bil_bip_bsq_files
4GLC2000https://forobs.jrc.ec.europa.eu/glc2000
5GLC-SHAREhttps://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/
6GLCNMOhttps://globalmaps.github.io/glcnmo.html#use
7MCD12Q1https://lpdaac.usgs.gov/products/mcd12q1v006/
8MCD12C1https://lpdaac.usgs.gov/products/mcd12c1v006/
9CCI-LChttp://maps.elie.ucl.ac.be/CCI/viewer/download.php
10GlobCoverhttps://www.esa.int/Applications/Observing_the_Earth/Space_for_our_climate/ESA_global_land_cover_map_available_online
11CLChttps://land.copernicus.eu/pan-european/corine-land-cover
12CGLS-LC100https://land.copernicus.eu/global/products/lc
13GLC_FCS30-2015https://zenodo.org/record/3986872#.ZEbv7HZBxPY
14GLC_FCS30-2020/GLC_FCS30-1985_2020https://zenodo.org/record/4280923#.ZEbrBXZBxPZ/https://zenodo.org/records/8239305
15GeoWiki Hybrid
1, 2
https://www.geo-wiki.org/
16iMap World 1.0暂未提供数据
17GlobeLand30https://www.webmap.cn/commres.do?method=globeIndex
18AGLC-2000-2015https://code.earthengine.google.com/?asset=users/xxc/GLC_2000_2015
19FROM-GLC30 (2010)https://data-starcloud.pcl.ac.cn/
20FROM-GLC30 (2015)https://data-starcloud.pcl.ac.cn/
21FROM-GLC30 (2017)https://data-starcloud.pcl.ac.cn/
22FROM-GLC-seghttps://data-starcloud.pcl.ac.cn/
23FROM-GLC-agghttps://data-starcloud.pcl.ac.cn/
24NLCDhttps://www.usgs.gov/centers/eros/science/national-land-cover-database#data
25GeoCover LChttps://proceedings.esri.com/library/userconf/proc02/pap0811/p0811.htm
26FROM-GLC10https://data-starcloud.pcl.ac.cn/
27WorldCover 10 mhttps://viewer.esa-worldcover.org/worldcover/https://doi.org/10.5281/zenodo.7254221
28Esri 10m Land Coverhttps://livingatlas.arcgis.com/landcoverexplorer/
29Dynamic Worldhttps://sites.google.com/view/dynamic-world/home; https://www.dynamicworld.app/explore/

新窗口打开| 下载CSV


参考文献

陈军, 陈晋, 宫鹏, .

全球地表覆盖高分辨率遥感制图

[J]. 地理信息世界, 2011(2):12-14.

[本文引用: 1]

Chen J, Chen J, Gong P, et al.

Higher resolution global land cover mapping

[J]. Geomatics World, 2011(2):12-14.

[本文引用: 1]

Fisher P, Comber A, Wadsworth R. Land use and land cover:contradiction or complement[M]. 2005:85-98.

[本文引用: 3]

陈军, 陈晋.

GlobeLand30遥感制图创新与大数据分析

[J]. 中国科学:地球科学, 2018, 48(10):1391-1392.

[本文引用: 2]

Chen J, Chen J.

GlobeLand30:Operational global land cover mapping and big-data analysis

[J]. Scientia Sinica(Terrae), 2018, 48(10):1391-1392.

[本文引用: 2]

Bounoua L, DeFries R, Collatz G J, et al.

Effects of land cover conversion on surface climate

[J]. Climatic Change, 2002, 52(1):29-64.

DOI:10.1023/A:1013051420309      [本文引用: 1]

陈军, 廖安平, 陈晋, .

全球30 m地表覆盖遥感数据产品-Globe Land30

[J]. 地理信息世界, 2017(1):1-8.

[本文引用: 1]

Chen J, Liao A P, Chen J, et al.

30-meter global land cover data product-Globe Land30

[J]. Geomatics World, 2017(1):1-8.

[本文引用: 1]

Yang H, Li S N, Chen J, et al.

The standardization and harmonization of land cover classification systems towards harmonized datasets:A review

[J]. ISPRS International Journal of Geo-Information, 2017, 6(5):154.

DOI:10.3390/ijgi6050154      URL     [本文引用: 2]

A number of national, regional and global land cover classification systems have been developed to meet specific user requirements for land cover mapping exercises, independent of scale, nomenclature and quality. However, this variety of land-cover classification systems limits the compatibility and comparability of land cover data. Furthermore, the current lack of interoperability between different land cover datasets, often stemming from incompatible land cover classification systems, makes analysis of multi-source, heterogeneous land cover data for various applications a very difficult task. This paper provides a critical review of the harmonization of land cover classification systems, which facilitates the generation, use and analysis of land cover maps consistently. Harmonization of existing land cover classification systems is essential to improve their cross-comparison and validation for understanding landscape patterns and changes. The paper reviews major land cover classification standards according to different scales, summarizes studies on harmonizing land cover mapping, and discusses some research problems that need to be solved and some future research directions.

张景华, 封志明, 姜鲁光.

土地利用/土地覆被分类系统研究进展

[J]. 资源科学, 2011, 33(6):1195-1203.

[本文引用: 2]

土地利用/土地覆被变化是全球变化研究中的一个重要内容,而土地利用/土地覆被分类又是研究土地覆被变化的重要前提,它既影响着分类结果的表达,也决定着分类数据的应用领域。本文简要回顾和评述了国内外土地利用/土地覆被分类系统的研究进展。研究认为,土地利用/土地覆被分类系统,1970年代之前以土地利用分类为主,着重于土地用途的差异,主要用于土地利用现状调查和土地利用制图;1970年代随着遥感和计算机技术的发展,以土地覆被为主的分类系统迅速发展起来,它着重于土地类型的差异,主要用于土地覆被变化研究。研究指出,目前的土地利用/土地覆被分类系统一般都适用于特定研究目的和研究尺度,没有统一标准,这种土地分类系统的不兼容性,给土地覆被数据的汇总、分析与共享带来了诸多不便。但一个“万能”的土地分类系统又是不存在的。鉴于此,研究认为一个标准土地分类系统应该是多级的、开放的系统,高级别的土地覆被类型可以直接基于遥感影像进行识别,以便于实现分类数据的比较和共享;低级别的土地覆被类型可以根据特定研究目的灵活制定,以满足特定的研究需要。

Zhang J, Feng Z M, Jiang L G.

Progress on studies of land use/land cover classification systems

[J]. Resources Science, 2011, 33(6):1195-1203.

[本文引用: 2]

Land use and land cover change (LUCC) is one of the most important aspects within the scope of global change. As a critical portion of LUCC study, classification of land use and land cover types not only affects the classification results, but also determines applications of relevant data. In the paper, studies of land use and land cover classification systems were reviewed. It could be concluded that the land use and land cover classification laid more emphasis on the land use classification before the 1970s. The land use classification system emphasized the differences between land functions and was mainly applied to land use inventory investigation and land use mapping. After then, the classification system based on land cover rapidly developed due to the development of satellite remote sensing and computer technology. This classification system emphasized the differences between land categories and was mainly applied to land cover change studies. The review shows that almost all current land use and land cover classification systems tend to be suitable only for a specific research purpose at a certain scale. The incompatibility amongst the current classification systems has resulted in numerous inconveniences and difficulties in the courses of aggregation, analysis, and sharing of land use and land cover data due to the absence of consistent standards. Therefore, a standardized classification system is extremely warranted. However, a universal classification system suitable for all kinds of research purposes is neither possible nor necessary. The reasons lie in that on the one hand, the minimum classification unit could be dependent on the mapping scale as well as the spatial resolution of remote sensing data; on the other hand, land use and land cover types of varying detailed degrees are required for different research purposes. Furthermore, it would be probable that some special land use and land cover types existed in specific regions, for example, the Qinghai-Tibet Plateau in China. At last, this review states that a standardized classification system should be hierarchically organized and could be extended. The land use and land cover types of higher hierarchy could be directly identified from remote sensing images without auxiliary information, which would make it convenient for data comparison and sharing. The land use and land cover types of lower hierarchy could be defined in terms of a specific study purpose, which could satisfy the specific study needs.

He C Y, Zhang J X, Liu Z F, et al.

Characteristics and progress of land use/cover change research during 1990—2018

[J]. Journal of Geographical Sciences, 2022, 32(3):537-559.

DOI:10.1007/s11442-022-1960-2      [本文引用: 1]

Pérez-Hoyos A, Rembold F, Kerdiles H, et al.

Comparison of glo-bal land cover datasets for cropland monitoring

[J]. Remote Sensing, 2017, 9(11):1118.

DOI:10.3390/rs9111118      URL     [本文引用: 3]

Accurate and reliable information on the spatial distribution of major crops is needed for detecting possible production deficits with the aim of preventing food security crises and anticipating response planning. In this paper, we compared some of the most widely used global land cover datasets to examine their comparative advantages for cropland monitoring. Cropland class areas are compared for the following datasets: FAO-GLCshare (FAO Global Land Cover Network), Geowiki IIASA-Hybrid (Hybrid global land cover map from the International Institute of Applied System Analysis), GLC2000 (Global Land Cover 2000), GLCNMO2008 (Global Land Cover by National Mapping Organizations), GlobCover, Globeland30, LC-CCI (Land Cover Climate Change Initiative) 2010 and 2015, and MODISLC (MODIS Land Cover product). The methodology involves: (1) highlighting discrepancies in the extent and spatial distribution of cropland, (2) comparing the areas with FAO agricultural statistics at the country level, and (3) providing accuracy assessment through freely available reference datasets. Recommendations for crop monitoring at the country level are based on a priority ranking derived from the results obtained from analyses 2 and 3. Our results revealed that cropland information varies substantially among the analyzed land cover datasets. FAO-GLCshare and Globeland30 generally provided adequate results to monitor cropland areas, whereas LC-CCI2010 and GLC2000 are less unsuitable due to large overestimations in the former and out of date information and low accuracy in the latter. The recently launched LC-CCI datasets (i.e., LC-CCI2015) show a higher potential for cropland monitoring uses than the previous version (i.e., LC-CCI2010).

岳健, 张雪梅.

关于我国土地利用分类问题的讨论

[J]. 干旱区地理, 2003, 26(1):78-88.

[本文引用: 1]

Yue J, Zhang X M.

A discussion on the classification of land use in China

[J]. Arid Land Geography, 2003, 26(1):78-88.

[本文引用: 1]

王人潮.

试论土地分类

[J]. 浙江大学学报(农业与生命科学版), 2002, 28(4):355-361.

[本文引用: 1]

Wang R C.

Discussion on the land classification

[J]. Journal of Zhejiang University (Agric.& Life Sci.), 2002, 28(4):355-361.

[本文引用: 1]

Deb S, Nathr R.

Land use/cover classification:An introduction review and comparison

[J]. Global Journals of Research in Engineering, 2012, 12(E1):5-16.

[本文引用: 1]

Wang J, He T, Zhou Q, et al.

Developing land use/cover classification system based on remote sensing data in China

[C]// Remote Sensing for Environmental Monitoring,GIS Applications,and Geology IV.SPIE, 2004,5574:52-60.

[本文引用: 1]

吕玉霞, 张玉贤, 马聪丽, .

IPCC与我国土地利用分类的对比分析

[J]. 地理空间信息, 2022, 20(7):22-25.

[本文引用: 1]

Lyu Y X, Zhang Y X, Ma C L, et al.

Land use classification comparative analysis between IPCC and China

[J]. Geospatial Information, 2022, 20(7):22-25.

[本文引用: 1]

Anderson J R, Hardy E E, Roach J T, et al. A land use and land cover classification system for use with remote sensor data[M]. Washington:U.S.Government Printing Office,1976.

[本文引用: 3]

Yang L M, Jin S M, Danielson P, et al.

A new generation of the United States National Land Cover Database:Requirements,research priorities,design,and implementation strategies

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018,146:108-123.

[本文引用: 4]

Wickham J, Stehman S V, Sorenson D G, et al.

Thematic accuracy assessment of the NLCD 2016 land cover for the conterminous United States

[J]. Remote Sensing of Environment, 2021,257:112357.

Vogelmann J E, Howard S M, Yang L, et al.

Completion of the 1990s national land cover data set for the conterminous United States from Landsat thematic mapper data and ancillary data sources

[J]. Photogrammetric Engineering and Remote Sensing, 2001,67:650-655,657-659,661-662.

[本文引用: 2]

Cunningham D J, Melican J E, Wemmelmann E, et al. GeoCover LC:A moderate resolution global land cover database[C/OL]//Proceedings of the 22nd Annual Esri International User Conference (Esri UC 2002).San Diego,USA, 2002.https://proceedings.esri.com/library/userconf/proc02/pap0811/p0811.htm.

URL     [本文引用: 1]

Bossard M, Feranec J, Otahel J. CORINE land cover technical guide:Addendum 2000[R/OL]. Copenhagen: European Environment Agency.(2000-05-29)[2025-11-03].https://www.eea.europa.eu/publications/tech40add.

URL     [本文引用: 1]

Büttner G. CORINE land cover and land cover change products[M]//Land Use and Land Cover Mapping in Europe.Dordrecht:Springer Netherlands,2014:55-74.

Loveland T R, Reed B C, Brown J F, et al.

Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data

[J]. International Journal of Remote Sensing, 2000, 21(6-7):1303-1330.

DOI:10.1080/014311600210191      URL     [本文引用: 2]

Friedl M A, Strahler A H, Hodges J C F, et al.

ISLSCP II MODIS(Collection 4) IGBP Land Cover,2000—2001

[DB/OL].Oak Ridge, TN: ORNL Distributed Active Archive Center, 2010[2025-11-03].https://www.earthdata.nasa.gov/data/catalog/ornl-cloud-modis-landcover-xdeg-968-1.

URL     [本文引用: 3]

Hansen M C, Reed B.

A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products

[J]. International Journal of Remote Sensing, 2000, 21(6-7):1365-1373.

DOI:10.1080/014311600210218      URL     [本文引用: 2]

Hansen M C, Defries R S, Townshend J R G, et al.

Global land cover classification at 1 km spatial resolution using a classification tree approach

[J]. International Journal of Remote Sensing, 2000, 21(6-7):1331-1364.

DOI:10.1080/014311600210209      URL    

Townshend J, Zhan X, DeFries R.

MODIS enhanced land cover and land cover change product algorithm theoretical basis documents (ATBD) version 2.0

[R/OL]. Greenbelt, MD: NASA Goddard Space Flight Center / University of Maryland, 1999(1999-05-01)[2025-11-03].https://modis.gsfc.nasa.gov/data/atbd/atbd_mod29.pdf.

URL     [本文引用: 1]

Sulla-Menashe D, Friedl M A.

User guide to collection 6 MODIS land cover(MCD12Q1 & MCD12C1) product

[EB/OL]. 2018(2018-05-14)[2025-11-03].https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf.

URL     [本文引用: 2]

何宇华, 谢俊奇, 孙毅.

FAO/UNEP土地覆被分类系统及其借鉴

[J]. 中国土地科学, 2005, 19(6):45-49.

[本文引用: 4]

He Y H, Xie J Q, Sun Y.

FAO/UNEP-land cover classification system (LCCS) and use for reference

[J]. China Land Science, 2005, 19(6):45-49.

[本文引用: 4]

Di Gregorio A, Jansen L J M. Land cover classification system:Classification concepts and user manual(software version 2)[M/OL]. Rome: Food and Agriculture Organization of the United Nations, 2005[2025-11-03].https://www.fao.org/4/y7220e/y7220e00.htm.

URL     [本文引用: 5]

Herold M, Schmullius C.

Report on the harmonization of global and regional land cover products

[R/OL].(2004-07-16)[2025-11-03].https://gofcgold.org/sites/default/files/docs/GOLD_20.pdf.

URL     [本文引用: 2]

Bartholome E, Belward A S.

GLC2000:A new approach to global land cover mapping from Earth observation data

[J]. International Journal of Remote Sensing, 2005, 26(9):1959-1977.

DOI:10.1080/01431160412331291297      URL     [本文引用: 3]

Tateishi R, Uriyangqai B, Al-Bilbisi H, et al.

Production of global land cover data-GLCNMO

[J]. International Journal of Digital Earth, 2011, 4(1):22-49.

DOI:10.1080/17538941003777521      URL     [本文引用: 2]

Tateishi R, Hoan N T, Kobayashi T, et al.

Production of global land cover Data-GLCNMO2008

[J]. Journal of Geography and Geology, 2014, 6(3):p99.

Kobayashi T, Tateishi R, Alsaaideh B, et al.

Production of global land cover data-GLCNMO2013

[J]. Journal of Geography and Geology, 2017, 9(3):1.

[本文引用: 2]

Defourny P, Lamarche C, Bontemps S, et al.

Land Cover CCI:Product user guide,version 2.0

[R/OL].(2017-04-10)[2025-11-03].https://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf.

URL     [本文引用: 2]

Bontemps S, Herold M, Kooistra L, et al.

Revisiting land cover observation to address the needs of the climate modeling community

[J]. Biogeosciences, 2012, 9(6):2145-2157.

DOI:10.5194/bg-9-2145-2012      URL     [本文引用: 3]

. Improving systematic observations of land cover, as an Essential Climate Variable, should contribute to a better understanding of the global climate system and thus improve our ability to predict climatic change. The aim of this paper is to bring global land cover observations closer to meeting the needs of climate science. First, consultation mechanisms were established with the climate modeling community to identify its specific requirements in terms of satellite-based global land cover products. This assessment highlighted specific needs in terms of land cover characterization, accuracy of products, as well as stability and consistency needs that are currently not met or even addressed. The current land cover representation and mapping techniques were then called into question to specifically focus on the critical need of stable products expressed by climate users. Decoupling the stable and dynamic components of the land cover characterization and using a multi-year dataset were proposed as two key approaches to allow generating consistent suites of global land cover products over time.

Defourny P, Schouten L, Bartalev S, et al. Accuracy assessment of a 300 m global land cover map:The GlobCover experience[C]//33rd International Symposium on Remote Sensing of Environment (ISRSE):Sustaining the Millennium Development Goals.Tucson, AZ (United States of America): International Center for Remote Sensing of Environment (ICRSE),2009:JRC54524.

[本文引用: 1]

Buchhorn M, Smets B, Bertels L, et al. Copernicus global land ser-vice:Land cover 100 m:Version 3 Globe 2015—2019:Product user manual[R/OL].(2020-09-08)[2025-11-03].https://zenodo.org/records/3938963.

URL     [本文引用: 1]

Zhang X, Liu L Y, Chen X D, et al.

GLC_FCS30:Global land-cover product with fine classification system at 30 m using time-series Landsat imagery

[J]. Earth System Science Data, 2021, 13(6):2753-2776.

DOI:10.5194/essd-13-2753-2021      [本文引用: 2]

Over past decades, a lot of global land-cover products have been released; however, these still lack a global land-cover map with a fine classification system and spatial resolution simultaneously. In this study, a novel global 30m land-cover classification with a fine classification system for the year 2015 (GLC_FCS30-2015) was produced by combining time series of Landsat imagery and high-quality training data from the GSPECLib (Global Spatial Temporal Spectra Library) on the Google Earth Engine computing platform. First, the global training data from the GSPECLib were developed by applying a series of rigorous filters to the CCI_LC (Climate Change Initiative Global Land Cover) land-cover and MCD43A4 NBAR products (MODIS Nadir Bidirectional Reflectance Distribution Function-Adjusted Reflectance). Secondly, a local adaptive random forest model was built for each 5 degrees x 5 degrees geographical tile by using the multi-temporal Landsat spectral and texture features and the corresponding training data, and the GLC_FCS30-2015 land-cover product containing 30 land-cover types was generated for each tile. Lastly, the GLC_FCS30-2015 was validated using three different validation systems (containing different land-cover details) using 44 043 validation samples. The validation results indicated that the GLC_FCS30-2015 achieved an overall accuracy of 82.5% and a kappa coefficient of 0.784 for the level-0 validation system (9 basic land-cover types), an overall accuracy of 71.4% and kappa coefficient of 0.686 for the UN-LCCS (United Nations Land Cover Classification System) level1 system (16 LCCS land-cover types), and an overall accuracy of 68.7% and kappa coefficient of 0.662 for the UN-LCCS level-2 system (24 fine land-cover types). The comparisons against other land-cover products (CCI_LC, MCD12Q1, FROM_GLC, and GlobeLand30) indicated that GLC_FCS30-2015 provides more spatial details than CCI_LC-2015 and MCD12Q1-2015 and a greater diversity of land-cover types than FROM_GLC-2015 and GlobeLand30-2010. They also showed that GLC_FCS30-2015 achieved the best overall accuracy of 82.5% against FROM_GLC-2015 of 59.1% and GlobeLand30-2010 of 75.9 %. Therefore, it is concluded that the GLC_FCS30-2015 product is the first global land-cover dataset that provides a fine classification system (containing 16 global LCCS land-cover types as well as 14 detailed and regional land-cover types) with high classification accuracy at 30 m. The GLC_FCS30-2015 global land-cover products produced in this paper are free access at https://doi.org/10.5281/zenodo.3986872 (Liu et al., 2020).

Liu L Y, Zhang X, Chen X D, et al.

GLC_FCS30-2020:Global land cover with fine classification system at 30 m in 2020(v1.2)

[DB/OL].(2020-11-18)[2025-11-03].https://zenodo.org/records/4280923.

URL     [本文引用: 3]

Liu H, Gong P, Wang J, et al.

Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0

[J]. Remote Sensing of Environment, 2021,258:112364.

[本文引用: 1]

Zanaga D, Van De Kerchove R, De Keersmaecker W, et al.

ESA WorldCover 10 m 2020 v100

[DB/OL].(2021-10-20)[2025-11-03].https://zenodo.org/records/5571936.

URL     [本文引用: 1]

Latham J, Cumani R, Rosati I, et al.

Global Land Cover SHARE (GLC-SHARE) database:Beta-Release version 1.0-2014

[EB/OL].[2025-11-03].https://www.fao.org/uploads/media/glc-share-doc.pdf.

URL     [本文引用: 1]

See L, Schepaschenko D, Lesiv M, et al.

Building a hybrid land cover map with crowdsourcing and geographically weighted regression

[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,103:48-56.

[本文引用: 1]

Fritz S, McCallum I, Schill C, et al.

Geo-Wiki.Org:The use of crowdsourcing to improve global land cover

[J]. Remote Sensing, 2009, 1(3):345-354.

DOI:10.3390/rs1030345      URL    

Global land cover is one of the essential terrestrial baseline datasets available for ecosystem modeling, however uncertainty remains an issue. Tools such as Google Earth offer enormous potential for land cover validation. With an ever increasing amount of very fine spatial resolution images (up to 50 cm × 50 cm) available on Google Earth, it is becoming possible for every Internet user (including non remote sensing experts) to distinguish land cover features with a high degree of reliability. Such an approach is inexpensive and allows Internet users from any region of the world to get involved in this global validation exercise. The Geo-Wiki Project is a global network of volunteers who wish to help improve the quality of global land cover maps. Since large differences occur between existing global land cover maps, current ecosystem and land-use science lacks crucial accurate data (e.g., to determine the potential of additional agricultural land available to grow crops in Africa), volunteers are asked to review hotspot maps of global land cover disagreement and determine, based on what they actually see in Google Earth and their local knowledge, if the land cover maps are correct or incorrect. Their input is recorded in a database, along with uploaded photos, to be used in the future for the creation of a new and improved hybrid global land cover map.

Fritz S, McCallum I, Schill C, et al.

Geo-Wiki:An online platform for improving global land cover

[J]. Environmental Modelling & Software, 2012,31:110-123.

[本文引用: 1]

Jun C, Ban Y F, Li S N.

Open access to earth land-cover map

[J]. Nature, 2014, 514(7523):434.

[本文引用: 1]

许晓聪, 李冰洁, 刘小平, .

全球2000年—2015年30 m分辨率逐年土地覆盖制图

[J]. 遥感学报, 2021, 25(9):1896-1916.

[本文引用: 1]

Xu X C, Li B J, Liu X P, et al.

Mapping annual global land cover changes at a 30 m resolution from 2000 to 2015

[J]. National Remote Sensing Bulletin, 2021, 25(9):1896-1916.

[本文引用: 1]

Gong P, Wang J, Yu L, et al.

Finer resolution observation and monitoring of global land cover:First mapping results with Landsat TM and ETM+ data

[J]. International Journal of Remote Sensing, 2013, 34(7):2607-2654.

DOI:10.1080/01431161.2012.748992      URL     [本文引用: 4]

Gong P, Liu H, Zhang M N, et al.

Stable classification with limited sample:Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017

[J]. Science Bulletin, 2019, 64(6):370-373.

DOI:10.1016/j.scib.2019.03.002      URL     [本文引用: 2]

Yu L, Wang J, Gong P.

Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets:A segmentation-based approach

[J]. International Journal of Remote Sensing, 2013, 34(16):5851-5867.

DOI:10.1080/01431161.2013.798055      URL     [本文引用: 1]

Yu L, Wang J, Li X C, et al.

A multi-resolution global land cover dataset through multisource data aggregation

[J]. Science China Earth Sciences, 2014, 57(10):2317-2329.

DOI:10.1007/s11430-014-4919-z      URL     [本文引用: 1]

Liu H, Gong P, Wang J, et al.

Annual dynamics of global land cover and its long-term changes from 1982 to 2015

[J]. Earth System Science Data, 2020, 12(2):1217-1243.

DOI:10.5194/essd-12-1217-2020      URL     [本文引用: 1]

. Land cover is the physical material at the surface of the Earth. As the cause and result of global environmental change, land cover\nchange (LCC) influences the global energy balance and biogeochemical cycles.\nContinuous and dynamic monitoring of global LC is urgently needed. Effective\nmonitoring and comprehensive analysis of LCC at the global scale are rare.\nWith the latest version of GLASS (Global Land Surface Satellite) CDRs\n(climate data records) from 1982 to 2015, we built the first record of\n34-year-long annual dynamics of global land cover (GLASS-GLC) at 5 km\nresolution using the Google Earth Engine (GEE) platform. Compared to earlier\nglobal land cover (LC) products, GLASS-GLC is characterized by high consistency, more\ndetail, and longer temporal coverage. The average overall accuracy for the\n34 years each with seven classes, including cropland, forest, grassland,\nshrubland, tundra, barren land, and snow/ice, is 82.81 % based on 2431\ntest sample units. We implemented a systematic uncertainty analysis and\ncarried out a comprehensive spatiotemporal pattern analysis. Significant\nchanges at various scales were found, including barren land loss and\ncropland gain in the tropics, forest gain in the Northern Hemisphere, and\ngrassland loss in Asia. A global quantitative analysis of human factors\nshowed that the average human impact level in areas with significant LCC was\nabout 25.49 %. The anthropogenic influence has a strong correlation with\nthe noticeable vegetation gain, especially for forest. Based on GLASS-GLC,\nwe can conduct long-term LCC analysis, improve our understanding of global\nenvironmental change, and mitigate its negative impact. GLASS-GLC will be\nfurther applied in Earth system modeling to facilitate research on global\ncarbon and water cycling, vegetation dynamics, and climate change. The\nGLASS-GLC data set presented in this article is available at\nhttps://doi.org/10.1594/PANGAEA.913496 (Liu et al., 2020).

Karra K, Kontgis C, Statman-Weil Z, et al.

Global land use/land cover with Sentinel 2 and deep learning

[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE, 2021:4704-4707.

[本文引用: 1]

Brown C F, Brumby S P, Guzder-Williams B, et al.

Dynamic World,Near real-time global 10 m land use land cover mapping

[J]. Scientific Data, 2022,9:251.

[本文引用: 1]

Dong R M, Li C, Fu H H, et al.

Improving 3-m resolution land cover mapping through efficient learning from an imperfect 10-m resolution map

[J]. Remote Sensing, 2020, 12(9):1418.

DOI:10.3390/rs12091418      URL     [本文引用: 1]

Substantial progress has been made in the field of large-area land cover mapping as the spatial resolution of remotely sensed data increases. However, a significant amount of human power is still required to label images for training and testing purposes, especially in high-resolution (e.g., 3-m) land cover mapping. In this research, we propose a solution that can produce 3-m resolution land cover maps on a national scale without human efforts being involved. First, using the public 10-m resolution land cover maps as an imperfect training dataset, we propose a deep learning based approach that can effectively transfer the existing knowledge. Then, we improve the efficiency of our method through a network pruning process for national-scale land cover mapping. Our proposed method can take the state-of-the-art 10-m resolution land cover maps (with an accuracy of 81.24% for China) as the training data, enable a transferred learning process that can produce 3-m resolution land cover maps, and further improve the overall accuracy (OA) to 86.34% for China. We present detailed results obtained over three mega cities in China, to demonstrate the effectiveness of our proposed approach for 3-m resolution large-area land cover mapping.

Li Z H, He W, Cheng M F, et al.

SinoLC-1:The first 1-meter resolution national-scale land-cover map of China created with a deep learning framework and open-access data

[J]. Earth System Science Data, 2023, 15(11):4749-4780.

DOI:10.5194/essd-15-4749-2023      URL     [本文引用: 1]

. In China, the demand for a more precise perception of the national land surface has become most urgent given the pace of development and urbanization. Constructing a very-high-resolution (VHR) land-cover dataset for China with national coverage, however, is a nontrivial task. Thus, this has become an active area of research that is impeded by the challenges of image acquisition, manual annotation, and computational complexity. To fill this gap, the first 1 m resolution national-scale land-cover map of China, SinoLC-1, was established using a deep-learning-based framework and open-access data, including global land-cover (GLC) products, OpenStreetMap (OSM), and Google Earth imagery. Reliable training labels were generated by combining three 10 m GLC products and OSM data. These training labels and 1 m resolution images derived from Google Earth were used to train the proposed framework. This framework resolved the label noise stemming from a resolution mismatch between images and labels by combining a resolution-preserving backbone, a weakly supervised module, and a self-supervised loss function, to refine the VHR land-cover results automatically without any manual annotation requirement. Based on large-storage and computing servers, processing the 73.25 TB dataset to obtain the SinoLC-1 covering the entirety of China, ∼ 9 600 000 km2, took about 10 months. The SinoLC-1 product was validated using a visually interpreted validation set including over 100 000 random samples and a statistical validation set collected from the official land survey report provided by the Chinese government. The validation results showed that SinoLC-1 achieved an overall accuracy of 73.61 % and a κ coefficient of 0.6595. Validations for every provincial region further indicated the accuracy of this dataset across the whole of China. Furthermore, the statistical validation results indicated that SinoLC-1 conformed to the official survey reports with an overall misestimation rate of 6.4 %. In addition, SinoLC-1 was compared with five other widely used GLC products. These results indicated that SinoLC-1 had the highest spatial resolution and the finest landscape details. In conclusion, as the first 1 m resolution national-scale land-cover map of China, SinoLC-1 delivered accuracy and provided primal support for related research and applications throughout China. The SinoLC-1 land-cover product is freely accessible at https://doi.org/10.5281/zenodo.7707461 (Li et al., 2023).

Zhang Y D, Chen G, Myint S W, et al.

UrbanWatch:A 1-meter resolution land cover and land use database for 22 major cities in the United States

[J]. Remote Sensing of Environment, 2022,278:113106.

[本文引用: 1]

Shi Q, Liu M X, Marinoni A, et al.

UGS-1m:Fine-grained urban green space mapping of 31 major cities in China based on the deep learning framework

[J]. Earth System Science Data, 2023, 15(2):555-577.

DOI:10.5194/essd-15-555-2023      URL     [本文引用: 2]

. Urban green space (UGS) is an important component in the urban ecosystem and has great significance to the urban ecological environment. Although the development of remote sensing platforms and deep learning technologies have provided opportunities for UGS mapping from high-resolution images (HRIs), challenges still exist in its large-scale and fine-grained application due to insufficient annotated datasets and specially designed methods for UGS. Moreover, the domain shift between images from different regions is also a problem that must be solved. To address these issues, a general deep learning (DL) framework is proposed for UGS mapping in the large scale, and fine-grained UGS maps of 31 major cities in mainland China are generated (UGS-1m). The DL framework consists of a generator and a discriminator. The generator is a fully convolutional network designed for UGS extraction (UGSNet), which integrates attention mechanisms to improve the discrimination to UGS, and employs a point-rending strategy for edge recovery. The discriminator is a fully connected network aiming to deal with the domain shift between images. To support the model training, an urban green space dataset (UGSet) with a total number of 4544 samples of 512×512 in size is provided. The main steps to obtain UGS-1m can be summarized as follows: (a) first, the UGSNet will be pre-trained on the UGSet in order to obtain a good starting training point for the generator. (b) After pre-training on the UGSet, the discriminator is responsible for adapting the pre-trained UGSNet to different cities through adversarial training. (c) Finally, the UGS results of 31 major cities in China (UGS-1m) are obtained using 2179 Google Earth images with a data frame of 7′30′′ in longitude and 5′00′′ in latitude and a spatial resolution of nearly 1.1 m. An evaluation of the performance of the proposed framework by samples from five different cities shows the validity of the UGS-1m products, with an average overall accuracy (OA) of 87.56 % and an F1 score of 74.86 %. Comparative experiments on UGSet with the existing state-of-the-art (SOTA) DL models proves the effectiveness of UGSNet as the generator, with the highest F1 score of 77.30 %. Furthermore, an ablation study on the discriminator fully reveals the necessity and effectiveness of introducing the discriminator into adversarial learning for domain adaptation. Finally, a comparison with existing products further shows the feasibility of the UGS-1m and the great potential of the proposed DL framework. The UGS-1m can be downloaded from https://doi.org/10.57760/sciencedb.07049 (Shi et al., 2023).

Brandt M, Tucker C J, Kariryaa A, et al.

An unexpectedly large count of trees in the West African Sahara and Sahel

[J]. Nature, 2020, 587(7832):78-82.

DOI:10.1038/s41586-020-2824-5      [本文引用: 1]

/

京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发