Please wait a minute...
 
国土资源遥感  2012, Vol. 24 Issue (3): 16-21    DOI: 10.6046/gtzyyg.2012.03.04
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于多源遥感数据的弯曲月溪形貌特征解译
李力1,2, 刘少峰1,2, 韦蔚1,2, 奚晓旭1,2, 杜守印3
1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
2. 地质过程与矿产资源国家重点 实验室, 北京 100083;
3. 中国矿业大学(北京)机电与信息工程学院, 北京 100083
Interpretation of Landform of Sinuous Rilles on the Moon Based on Multi-data of Remote Sensing
LI Li1,2, LIU Shao-feng1,2, WEI Wei1,2, XI Xiao-xu1,2, DU Shou-yin3
1. School of the Geosciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China;
2. State Key Laboratory of Geological Processes and Mineral Resources, Beijing 100083, China;
3. School of Mechanical & Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
全文: PDF(1132 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 弯曲月溪是月球火山作用的产物,其形貌特征可以反映月海玄武岩的喷发历史和演化结果。基于最新高分辨率遥感月表图像和高精度DEM数据,分析月球Aristarchus地区弯曲月溪的形貌特征; 结合Clementine UV/VIS多光谱图像的波段比值合成图像,分析月溪的物质成分。研究结果支持弯曲月溪的玄武岩熔岩流热侵蚀成因,表明研究区内的弯曲月溪具有相同的物源特征,月表坡度是控制月溪的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志军
甘甫平
李贤庆
徐延峰
梁树能
关键词 ASTER黄山铜镍矿主成分分析光谱角制图    
Abstract:Sinuous rilles are the most easily recognizable small volcanic features on the moon, which can provide information on volcanic history and evolution of the moon. Lunar orbiter laser altimeter (LOLA) data were used in this paper to supplement Chang'E CCD and lunar reconnaissance orbiter camera (LROC) images for making detailed observations of morphologic and topographic characteristics of sinuous rilles in Aristarchus region. Clementine images from three bands of the ultraviolet-visible camera were used to analyze the compositional properties of sinuous rille substrates below the pyroclastics. Topographic data lend support to the theory that sinuous rilles were formed by the thermal erosion of the basalt lava, the compositional property of sinuous rille substrates is the same, and the slope rather than the regional structural pattern is the dominant factor controlling the rille.
Key wordsASTER    Huangshan copper-nickel ore    principal component analysis(PCA)    spectral angle mapping(SAM)
收稿日期: 2011-10-12      出版日期: 2012-08-20
: 

TP75

 
基金资助:

国家高技术研究发展(863)计划绕月探测工程科学数据应用与研究重点项目(编号: 2009AA12220101)资助。

引用本文:   
李力, 刘少峰, 韦蔚, 奚晓旭, 杜守印. 基于多源遥感数据的弯曲月溪形貌特征解译[J]. 国土资源遥感, 2012, 24(3): 16-21.
LI Li, LIU Shao-feng, WEI Wei, XI Xiao-xu, DU Shou-yin. Interpretation of Landform of Sinuous Rilles on the Moon Based on Multi-data of Remote Sensing. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 16-21.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2012.03.04      或      https://www.gtzyyg.com/CN/Y2012/V24/I3/16
[1] Wilhelms D E.The Geologic History of the Moon[M].Washington DC:U S Government Printing Office,1987:85-96.
[2] Heiken G H,Vaniman D T,French B M.Lunar Sourcebook: A User’s Guide to the Moon[M].USA:Cambridge University Press,1991:94-111.
[3] McGill G E.Attitude of Fractures Bounding Straight and Arcuate Lunar Rilles[J].Icarus,1971,14(1):53-58.
[4] Golombek M P.Structural Analysis of Lunar Grabens and the Shallow Crustal Structure of the Moon[J].J Geophys Res,1979,84(B9):4657-4666.
[5] Schubert G,Lingenfelter R E,Peale S J.The Morphology,Distribution,and Origin of Lunar Sinuous Rilles[J].Rev Geophys,1970,8(1):199-224.
[6] Greeley R.Lava Tubes and Channels in the Lunar Marius Hills[J].The Moon,1971,3(3):289-314.
[7] Gornitz V.The Origin of Sinuous Rilles[J].The Moon,1973,6 (3/4):337-356.
[8] Hulme G.Turbulent Lava Flows and the Formation of Lunar Sinuous Rilles[J].Mod Geol,1973,4:107-117.
[9] Carr M H.The Role of Lava Erosion in the Formation of Lunar Rilles and Martian Channels[J].Icarus,1974,22(1):1-23.
[10] Honda C,Fujimura A.Formation Process of Lunar Sinuous Rilles by Thermal Erosion of Basaltic Lava Flow[C]//Proceedings of the 36th Annual Lunar and Planetary Science Conference.League,2005.
[11] Wilson L,Head J W.Conditions in Lunar Eruptions Producing Sinuous Rilles[C]//Preceedings of the 41st Lunar and Planetary Science conference.Texas,2010.
[12] Coombs C R,Hawke B R,Wilson L.Terrestrial Analogs to Lunar Sinuous Rilles:Kauhako Crater and Channel,Kalaupapa,Molokai and Other Hawaiian Lava Conduit Systems[C]//Poceedings of the 20th Lunar and Planetary Science Conference.Houston,1990.
[13] Strain P L,Elbaz F.Topography of Sinuous Rilles in the Harbinger Mountains Region of the Moon[J].The Moon,1976,16:221-229.
[14] Hurwitz D M,Head J W,Wilson L,et al.Lunar Sinuous Rilles:Analysis of Morphology,Topography,and Mineralogy,and Implications for a Thermal Erosion Origin[C]//Proceedings of the 41st Lunar and Planetary Science Conference.Texas,2010.
[15] 闫柏琨,甘甫平,王润生,等.基于光谱分解的Clementine UV/VIS/NIR数据月表矿物填图[J].国土资源遥感,2009(4):19-24. Yan B K,Gan F P,Wang R S,et al.Mineral Mapping of the Lunar Surface Using Clementine Uv/Vis/Nir Data Based on Unmixing of Spectral[J].Remote Sensing for Land and Resources,2009(4):19-24(in Chinese with English Abstract).
[16] 甘甫平,于艳梅,闫柏琨.月表形貌格局和物源特征的耦合性初步研究[J].国土资源遥感,2009(4):14-18. Gan F P,Yu Y M,Yan B K.A Primary Study of the Relationship Between Lunar Surface Topography and Physiognomy and Geological Information Coupling[J].Remote Sensing for Land and Resources,2009(4):14-18(in Chinese with English Abstract).
[17] McEwen A S,Robinson M S,Eliason E M,et al.Clementine Observations of the Aristarchus Region of the Moon[J].Science,1994,266(5192):1858-1862.
[18] Murase T,Mcbirney A R.Viscosity of Lunar Lavas[J].Science,1970,167(3942):1491-1493.
[19] Hulme G.A Review of Lava Flow Processes Related to the Formation of Lunar Sinuous Rilles[J].Surv Geophys,1982,5(3):245-279.
[20] Wilson L,Head J W.Conditions in Lunar Eruptions Producing Sinuous Rilles[C]//Proceedings of the 41st Lunar and Planetary Science Conference.Texas,2010.
[1] 秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
[2] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[3] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3): 156-163.
[4] 安健健, 孟庆岩, 胡蝶, 胡新礼, 杨健, 杨天梁. 基于Faster R-CNN的火电厂冷却塔检测及工作状态判定[J]. 国土资源遥感, 2021, 33(2): 93-99.
[5] 陈震, 夏学齐, 陈建平. 土地生态质量遥感评价模型与主控因子研究——以广安市为例[J]. 国土资源遥感, 2021, 33(1): 191-198.
[6] 董天成, 杨肖, 李卉, 张志, 齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取[J]. 国土资源遥感, 2021, 33(1): 129-137.
[7] 木哈代思·艾日肯, 张飞, 刘康, 阿依努尔·玉山江. 基于天宫二号及Landsat8城镇生态环境现状评价[J]. 国土资源遥感, 2020, 32(4): 209-218.
[8] 田青林, 潘蔚, 李瑶, 张川, 陈雪娇, 余长发. 基于小波包变换和权重光谱角制图的岩心高光谱蚀变信息提取[J]. 国土资源遥感, 2019, 31(4): 41-46.
[9] 安全, 贺中华, 赵翠薇, 梁虹, 焦树林, 杨朝晖. 基于地貌视角的喀斯特流域水系分维估算方法适应性分析[J]. 国土资源遥感, 2019, 31(4): 104-111.
[10] 肖晨超, 吴小娟, 汪大明, 褚永彬. 基于烃类微渗漏的油气异常信息提取及远景区预测——以中非Salamat盆地为例[J]. 国土资源遥感, 2019, 31(4): 120-127.
[11] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[12] 段俊斌, 彭鹏, 杨智, 刘乐. 基于ASTER数据的多金属成矿有利区预测[J]. 国土资源遥感, 2019, 31(3): 193-200.
[13] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[14] 谢奇芳, 姚国清, 张猛. 基于Faster R-CNN的高分辨率图像目标检测技术[J]. 国土资源遥感, 2019, 31(2): 38-43.
[15] 董立新. 三峡库区森林叶面积指数多模型遥感估算[J]. 国土资源遥感, 2019, 31(2): 73-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发