Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (1): 151-157    DOI: 10.6046/zrzyyg.2021074
     技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于多源数据的新疆干旱特征及干旱模型研究
秦大辉1(), 杨灵1, 谌伦超1, 段云飞1, 贾宏亮1, 李贞培1, 马建琴2
1.西南石油大学土木工程与测绘学院,成都 610500
2.华北水利水电大学水利学院,郑州 450046
A study on the characteristics and model of drought in Xinjiang based on multi-source data
QIN Dahui1(), YANG Ling1, CHEN Lunchao1, DUAN Yunfei1, JIA Hongliang1, LI Zhenpei1, MA Jianqin2
1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2. School of Water Conservancy, North China University of Water Conservancy and Hydroelectric Power, Zhengzhou 450046, China
全文: PDF(2955 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

综合考虑大气降水-植被生长-海拔相互作用等多元成因,以新疆地区2001—2019年的MODIS数据、TRMM降水数据以及该地区数字高程模型(digital elevation model,DEM)数据为遥感数据源,计算降水集中指数(precipitation concentration index,PCI)、温度植被干旱指数(temperature vegetation dryness index,TVDI)以及DEM等参数,利用主成分分析建立了改进的综合干旱监测模型。利用该模型对研究区进行时空分析,结果表明: 干旱发生频率在空间上主要呈现中部高四周低的特点,研究时段内约47.7%的区域发生了干旱,其中32.3%的干旱区其干旱频率可达60%以上,主要集中于塔里木盆地以及吐鲁番盆地; 研究区旱情变化趋势存在较大差异,3—9月线性回归斜率正值数值远大于负值,根据结果预测研究区2020年干旱情况主要表现为春旱和夏旱。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦大辉
杨灵
谌伦超
段云飞
贾宏亮
李贞培
马建琴
关键词 干旱监测多源数据主成分分析时空演变趋势分析    
Abstract

An improved and comprehensive drought monitoring model was developed in this study. Given multi-genetic types such as the interaction of atmospheric precipitation, vegetation growth, and elevation, multiple data sources were selected for the model, including EOS-MODIS data, TRMM precipitation data, and the region SRTM-DEM(digital elevation model) data from 2001 to 2019 in Xinjiang. The parameters including precipitation concentration index (PCI), temperature and vegetation drought index (TVDI), and DEM were calculated, and the principal component analysis (PCA) method was employed to establish the model. Then, the model was used to analyze the spatio-temporal characteristics of drought in the study area. The analytical results show that the annual occurrence frequency of drought in the study area from 2001 to 2019 was high in the middle part and low in the surrounding areas. In addition, drought struck 47.7% of the study area, and the occurrence frequency of drought reached 60% in 32.3% of the drought regions. Meanwhile, drought was concentrated in the Tarim and Turpan basins. The changing trends of drought in the study area differed greatly. For the linear regression slope of drought from March and September, the absolute values of the positive slope were far greater than those of the negative slope. Based on this, it can be predicted that the drought in the study area mainly included spring and summer droughts in 2020.

Key wordsdrought monitoring    multi-source data    principal component analysis    spatio-temporal evolution    trend analysis
收稿日期: 2021-03-15      出版日期: 2022-03-14
ZTFLH:  TP79  
基金资助:工程结构安全评估与防灾技术四川省青年科技创新研究团队项目资助编号(2019JDTD0017)
作者简介: 秦大辉(1980-),男,博士,副教授,主要从事图像处理、摄影测量、计算机视觉、防灾减灾等方面的研究。Email: qindahui@qq.com
引用本文:   
秦大辉, 杨灵, 谌伦超, 段云飞, 贾宏亮, 李贞培, 马建琴. 基于多源数据的新疆干旱特征及干旱模型研究[J]. 自然资源遥感, 2022, 34(1): 151-157.
QIN Dahui, YANG Ling, CHEN Lunchao, DUAN Yunfei, JIA Hongliang, LI Zhenpei, MA Jianqin. A study on the characteristics and model of drought in Xinjiang based on multi-source data. Remote Sensing for Natural Resources, 2022, 34(1): 151-157.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021074      或      https://www.gtzyyg.com/CN/Y2022/V34/I1/151
Fig.1  研究区气象站点分布
Fig.2  模型构建流程
干旱等级 SPEI SDMI
无旱 - 0.5 0.4
轻度干旱 ( - 1.0 , - 0.5 ) ( 0.3,0.4 )
中度干旱 ( - 1.5 , - 1.0 ] ( 0.2,0.3 ]
重度干旱 [ - 2.0 , - 1.5 ] [ 0.1,0.2 ]
极度干旱 < - 2.0 < 0.1
Tab.1  干旱等级划分
月份 相关性系数 月份 相关性系数
1月 0.49 7月 0.73
2月 0.51 8月 0.74
3月 0.66 9月 0.70
4月 0.66 10月 0.64
5月 0.70 11月 0.58
6月 0.70 12月 0.18
Tab.2  SDMI值与SPEI指数的相关性系数
Fig.3  总干旱频率分布
Fig.4  站点干旱频率
Fig.5  月际干旱频率
Fig.6  研究区季节干旱分布
Fig.7  1—12月线性回归斜率统计特征
[1] Abuzar M K, Shafiq M, Mahmood S A, et al. Drought risk assessment in the Khushab region of Pakistan using satellite remote sensing and geospatial methods[J]. International Journal of Economic and Environment Geology, 2019, 10(1):48-56.
doi: 10.46660/ijeeg.Vol10.Iss1.2019.217
[2] 沈润平, 郭佳, 张婧娴, 等. 基于随机森林的遥感干旱监测模型的构建[J]. 地球信息科学学报, 2017, 19(1):125-133.
doi: 10.3724/SP.J.1047.2017.00125
Shen R P, Guo J, Zhang J X, et al. Construction of a drought monitoring model using the random forest based remote sensing[J]. Journal of Geo-Information Science, 2017, 19(1):125-133.
[3] 刘英, 岳辉, 侯恩科. MODIS数据在陕西省干旱监测中的应用[J]. 自然资源遥感, 2019, 31(2):172-179.doi: 10.6046/gtzyyg.2019.02.24.
doi: 10.6046/gtzyyg.2019.02.24
Liu Y, Yue H, Hou E K. Drought monitoring based on MODIS in Shaanxi[J]. Remote Sensing for Land and Resources, 2019, 31(2):172-179.doi: 10.6046/gtzyyg.2019.02.24.
doi: 10.6046/gtzyyg.2019.02.24
[4] 王展鹏, 宋立生, 兰子焱, 等. 考虑下垫面类型的干旱指数比较研究[J]. 遥感技术与应用, 2019, 34(4):865-873.
Wang Z P, Song L S, Lan Z Y, et al. Evaluation of drought indices of metrology,hydrology and agriculture over the continental United States[J]. Remote Sensing Technology and Application, 2019, 34(4):865-873.
[5] Sun X, Wang M, Li G, et al. Regional-scale drought monitor using synthesized index based on remote sensing in northeast China[J]. Open Geosciences, 2020, 12(1):163-173.
doi: 10.1515/geo-2020-0037
[6] Kogan F N. Application of vegetation index and brightness temperature for drought detection[J]. Advances in Space Research, 1995, 15(11):91-100.
[7] 温庆志, 孙鹏, 张强, 等. 基于多源遥感数据的农业干旱监测模型构建及应用[J]. 生态学报, 2019, 39(20):7757-7770.
Wen Q Z, Sun P, Zhang Q, et al. An integrated agricultural drought monitoring model based on multi-source remote sensing data:Model development and application[J]. Acta Ecologica Sinica, 2019, 39(20):7757-7770.
[8] 杜灵通, 田庆久, 王磊, 等. 基于多源遥感数据的综合干旱监测模型构建[J]. 农业工程学报, 2014, 30(9):126-132.
Du L T, Tian Q J, Wang L, et al. A synthesized drought monitoring model based on multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(9):126-132.
[9] 刘高鸣, 谢传节, 何天乐, 等. 基于多源数据的农业干旱监测模型构建[J]. 地球信息科学学报, 2019, 21(11):1811-1822.
doi: 10.12082/dqxxkx.2019.180666
Liu G M, Xie C J, He T L, et al. Agricultural drought monitoring model constructing based on multi-source data[J]. Journal of Geo-Information Science, 2019, 21(11):1811-1822.
[10] 赵慧, 姚俊强, 李新国, 等. 新疆气候干湿变化特征分析[J]. 中山大学学报(自然科学版), 2020, 59(5):126-133.
Zhao H, Yao J Q, Li X G, et al. The characteristics of climate change in Xinjiang during1961—2015[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2020, 59(5):126-133.
[11] 黄静, 张运, 汪明秀, 等. 近17年新疆干旱时空分布特征及影响因素[J]. 生态学报, 2020, 40(3):1077-1088.
Huang J, Zhang Y, Wang M X, et al. Spatial and temporal distribution characteristics of drought and its relationship with meteorological factors in Xinjiang in last 17 years[J]. Acta Ecologica Sinica, 2020, 40(3):1077-1088.
[12] Arun K K C, Reddy G P O, Masilamani P, et al. Integrated drought monitoring index:A tool to monitor agricultural drought by using time-series datasets of space-based earth observation satellites[J]. Advances in Space Research, 2021, 67(1):298-315.
doi: 10.1016/j.asr.2020.10.003
[13] 史晓亮, 吴梦月, 丁皓. SPEI和植被遥感信息监测西南地区干旱差异分析[J]. 农业机械学报, 2020, 51(12):184-192.
Shi X L, Wu M Y, Ding H. Difference analysis of SPEI and vegetation remote sensing information in drought monitoring in southwest China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12):184-192.
[14] 陈丙寅, 杨辽, 陈曦, 等. 基于改进型TVDI在干旱区旱情监测中的应用研究[J]. 干旱区地理, 2019, 42(4):902-913.
Chen B Y, Yang L, Chen X, et al. Application of modified TVDI in drought monitoring in arid areas[J]. Arid Land Geography, 2019, 42(4):902-913.
[15] 余灏哲, 李丽娟, 李九一. 基于TRMM降尺度和MODIS数据的综合干旱监测模型构建[J]. 自然资源学报, 2020, 35(10):2553-2568.
Yu H Z, Li L J, Li J Y. Establishment of comprehensive drought monitoring model based on downscaling TRMM and MODIS data[J]. Journal of Natural Resources, 2020, 35(10):2553-2568.
doi: 10.31497/zrzyxb.20201019
[16] Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A multiscalar drought index sensitive to global warming:The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7):1696-1718.
doi: 10.1175/2009JCLI2909.1
[17] Irannezhad M, Ahmadi B, Kløve B, et al. Atmospheric circulation patterns explaining climatological drought dynamics in the boreal environment of Finland,1962—2011[J]. International Journal of Climatology, 2017, 37(s1):801-817.
doi: 10.1002/joc.2017.37.issue-S1
[18] 陈诚, 赵书河. 基于TRMM降雨数据的中国黄淮海地区干旱监测分析[J]. 自然资源遥感, 2016, 28(1):122-129.doi: 10.6046/gtzyyg.2016.01.18.
doi: 10.6046/gtzyyg.2016.01.18
Chen C, Zhao S H. Drought monitoring and analysis of Huanghuai Hai plain based on TRMM precipitation data[J]. Remote Sensing for Land and Resources, 2016, 28(1):122-129.doi: 10.6046/gtzyyg.2016.01.18.
doi: 10.6046/gtzyyg.2016.01.18
[19] 吕潇然, 尹晓天, 宫阿都, 等. 基于植被状态指数的云南省农业干旱状况时空分析[J]. 地球信息科学学报, 2016, 18(12):1634-1644.
doi: 10.3724/SP.J.1047.2016.01634
Lyu X R, Yin X T, Gong A D, et al. Temporal and spatial analysis of agricultural drought in Yunnan Province based on vegetation condition index[J]. Journal of Geo-Information Science, 2016, 18(12):1634-1644.
[20] 任怡, 王义民, 畅建霞, 等. 基于多源指标信息的黄河流域干旱特征对比分析[J]. 自然灾害学报. 2017, 26(4):106-115.
Ren Y, Wang Y M, Chang J X, et al. Drought characteristics analysis of the Yellow River basin based on the index of multi-source information[J]. Journal of Natural Disasters, 2017, 26(4):106-115.
[1] 郭艺, 甘甫平, 闫柏琨, 白娟, 邢乃琛, 刘琪. 1948—2021年河南省土壤含水量时空分布特征及其影响因素研究[J]. 自然资源遥感, 2023, 35(3): 241-252.
[2] 赵安周, 张向蕊, 相恺政, 刘宪锋, 张靓涵. 基于夜间灯光和统计数据的黄土高原城镇化水平时空格局分析[J]. 自然资源遥感, 2023, 35(3): 253-263.
[3] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[4] 朱琳, 黄玉玲, 杨刚, 孙伟伟, 陈超, 黄可. 基于GEE的杭州湾海岸线遥感提取与时空演变分析[J]. 自然资源遥感, 2023, 35(2): 50-60.
[5] 张琼艺, 李昆, 雍志玮, 熊俊楠, 程维明, 肖坤洪, 刘东丽. 基于夜光遥感数据的西南地区多维贫困测度及时空演变分析[J]. 自然资源遥感, 2022, 34(4): 286-298.
[6] 覃纹, 黄秋燕, 覃志豪, 刘剑洪, 韦高杨. 广西糖料蔗种植区干旱遥感时空分析[J]. 自然资源遥感, 2022, 34(2): 261-270.
[7] 孙肖, 彭军还, 赵锋, 王晓阳, 吕洁, 张登峰. 基于空间统计学的高光谱遥感影像主成分选择方法[J]. 自然资源遥感, 2022, 34(2): 37-46.
[8] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[9] 吴琳琳, 李晓燕, 毛德华, 王宗明. 基于遥感和多源地理数据的城市土地利用分类[J]. 自然资源遥感, 2022, 34(1): 127-134.
[10] 布自强, 白林波, 张佳瑜. 基于夜光遥感的宁夏沿黄城市群时空演变[J]. 自然资源遥感, 2022, 34(1): 169-176.
[11] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[12] 赖佩玉, 黄静, 韩旭军, 马明国. 基于GEE的三峡蓄水对重庆地表水和植被影响研究[J]. 自然资源遥感, 2021, 33(4): 227-234.
[13] 晋成名, 杨兴旺, 景海涛. 基于RS的陕北地区植被覆盖度变化及驱动力研究[J]. 自然资源遥感, 2021, 33(4): 258-264.
[14] 魏英娟, 刘欢. 北衙金矿床遥感矿化蚀变信息提取及找矿预测[J]. 自然资源遥感, 2021, 33(3): 156-163.
[15] 陈超, 陈慧欣, 陈东, 张自力, 张旭锋, 庄悦, 褚衍丽, 陈建裕, 郑红. 舟山群岛海岸线遥感信息提取及时空演变分析[J]. 国土资源遥感, 2021, 33(2): 141-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发