Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (1): 152-157    DOI: 10.6046/gtzyyg.2014.01.26
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
近40年乌兰乌拉湖变化的遥感分析与水文模型模拟
闫强1,2, 廖静娟1, 沈国状1
1. 中国科学院遥感与数字地球研究所数字地球科学重点实验室, 北京 100094;
2. 中国科学院大学, 北京 100049
Remote sensing analysis and simulation of change of Ulan Ul Lake in the past 40 years
YAN Qiang1,2, LIAO Jingjuan1, SHEN Guozhuang1
1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(1071 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了研究可可西里地区的湖泊变化及其与气候变化的响应关系,利用TM/ETM+图像提取乌兰乌拉湖水体面积,利用高度计数据获得湖泊水位,分析湖泊面积和水位的变化;并计算得到2003—2009年湖泊水量变化;然后利用SWAT模型(soil and water assessment tool),对乌兰乌拉湖1970—2012年的径流情况进行模拟,其中土壤分类、土地利用分类和气象数据作为输入数据,利用遥感数据计算湖泊径流量,进行模型率定和验证。结果表明:1970—1990年,乌兰乌拉湖湖泊面积持续缩小,1990年以后湖泊面积持续增大,1990—2010年湖泊面积共增长了129 km2,水位也持续上升;SWAT模型模拟值和真实值的决策系数R2=0.82,模型适用性强,长期模拟结果与遥感监测结果的趋势一致;乌兰乌拉湖流域多年平均年径流量为103.8 mm,高峰出现在7—9月。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘丙新
李颖
高超
关键词 机载多光谱数据光谱特征溢油    
Abstract

In order to study the response relationship of the change of the Hoh Xil Lake to the climate change, the authors extracted surface area of the Ulan Ul Lake based on the remote sensing images (Landsat TM/ETM+) from 1970 to 2010, and examined the lake level elevation variations by GLAS/ICESat lase altimeter during the period of 2003-2009. On the basis of the lake area and level elevation extracted from remote sensing data, the variations of water quantity were calculated. SWAT model(soil and water assessment tool)was used to simulate the runoff in the basin of the Ulan Ul Lake from 1970 to 2012. During the simulation, DEM, land-use classification, soil classification and meteorological data served as input data, and the model was calibrated and verified by the variations of water quantity. The results showed that the lake area decreased by 70 km2 from 1970 to 1990, and increased by 129 km2 from 1990 to the present; the correlation coefficient of the simulated and measured data is R2= 0.82. These data suggest that the model is feasible, and the simulation results are in agreement with measured results from remote sensing. The average annual runoff of the Ulan Ul Lake was 103.8 mm, and the peak of runoff occurred from July to September.

Key wordsairborne multispectral data    spectral characteristics    oil spill
收稿日期: 2013-03-14      出版日期: 2014-01-08
:  TP79  
基金资助:

国家“973”科学研究计划项目“空间观测全球变化敏感因子的机理与方法”(编号:2009CB723900)资助。

作者简介: 闫强(1987-),男,硕士研究生,主要从事遥感数据应用方面的研究。Email:qyan87@gmail.com。
引用本文:   
闫强, 廖静娟, 沈国状. 近40年乌兰乌拉湖变化的遥感分析与水文模型模拟[J]. 国土资源遥感, 2014, 26(1): 152-157.
YAN Qiang, LIAO Jingjuan, SHEN Guozhuang. Remote sensing analysis and simulation of change of Ulan Ul Lake in the past 40 years. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 152-157.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.01.26      或      https://www.gtzyyg.com/CN/Y2014/V26/I1/152

[1] 冯松, 汤懋苍, 王冬梅.青藏高原是我国气候变化启动区的新证据[J].科学通报, 1998, 43(6):633-636. Feng S, Tang M C, Wang D M.The new evidence that the Tibetan Plateau is promoter region in China in climate change[J].Chinese Science Bulletin, 1998, 43(6):633-636.

[2] Liao J J, Shen G Z, Li Y K.Lake variations in response to climate change in the Tibetan Plateau in the past 40 years[J].International Journal of Digital Earth, 2012:1-16.

[3] 鲁安新, 姚檀栋, 王丽红, 等.青藏高原典型冰川和湖泊变化遥感研究[J].冰川冻土, 2005, 37(6):783-792. Lu A X, Yao T D, Wang L H, et al.Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing[J].Journal of Glaciology and Geocryology, 2005, 37(6):783-792.

[4] 黄卫东, 廖静娟, 沈国壮.近40年西藏那曲南部湖泊变化及其成因探讨[J].国土资源遥感, 2012, 24(3):123-128. Huang W D, Liao J J, Shen G Z.Lake change in past 40 years in the southern Naqu district of Tibet and analysis of its driving force[J].Remote Sensing for Land and Resources.2012, 24(3):123-128.

[5] 车涛, 李新, Mool P K, 等.希夏邦马峰东坡冰川与冰川湖泊变化遥感监测[J].冰川冻土, 2005, 27(6):801-805. Che T, Li X, Mool P K, et al.Monitoring glaciers and associated glacial lakes on the east slopes of mount Xixabangma from remote sensing images[J].Journal of Glaciology and Geocryology, 2005, 27(6):801-805.

[6] 陈锋, 康世昌, 张拥军, 等.纳木错流域冰川和湖泊变化对气候变化的响应[J].山地学报, 2009, 27(6):641-647. Chen F, Kang S C, Zhang Y J, et al.Glaciers and lake change in response to climate change in the Nam Co basin, Tibet[J].Journal of Mountain Science, 2009, 27(6):641-647.

[7] 边多, 杜军, 胡军, 等.1975—2006年西藏羊卓雍错流域内湖泊水位变化对气候变化的响应[J].冰川冻土, 2009, 31(3):404-409. Bian D, Du J, Hu J, et al.Response of the water level of the Yamzho Yum Co to climate change during 1975-2006[J].Journal of Glaciology and Geocryology, 2009, 31(3):404-409.

[8] Birkett C M.Synergistic remote sensing of lake chad:Variability of basin inundation[J].Remote Sensing of Environment, 2000, 72(2):218-236.

[9] Frederic F, Calmant S, Cauhope M, et al.Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin[J].Remote Sensing of Environment, 2006, 100(2):252-264.

[10] Vu H P, Roderik L, Massimo M.ICESat derived elevation changes of Tibetan lakes between 2003 and 2009[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 17:12-22.

[11] Hyongki L, Shum C K, Kuo H T, et al.Present-day lake level variation from ENVISAT altimetry over the northeastern Qinghai-Ti betan Plateau:Links with precipitation and temperature[J].Terrestrial Atmospheric and Oceanic Sciences, 2011, 22(2):169-175.

[12] Cruise J F, Limaye A S, Abed N.Assessment of impacts of climate change on water quality in the southeastern United States[J].Journal of the American Water Resources Association, 1999, 35(6):1539-1550.

[13] Stonefelt M D, Fontaine T A, Hotchkiss R H.Impacts of climate change on water yield in the upper Wind River basin[J].Journal of the American Water Resources Association, 2000, 36(2):321-336.

[14] Stone M C, Hotchkiss R H, Hubbard C M, et al.Impacts of climate change on Missouri River basin water yield[J].Journal of the American Water Resources Association, 2001, 37(5):1119-1129.

[15] Eckhardta K, Ulbrichb U.Potential impacts of climate change on ground water recharge and streamflow in acentral European low mountain range[J].Journal of Hydrology, 2003, 284(1/4):244-252.

[16] 张小咏, 李佳, 杨艳昭, 等.基于SWAT模型的长江源区径流模拟[J].西北林学院学报, 2012, 27(5):38-44. Zhang X Y, Li J, Yang Y Z, et al.Runoff simulation of the catchment of the headwaters of the Yangtze[J].Journal of Northwest Forestry University, 2012, 27(5):38-44.

[17] 沈华东, 于革.青藏高原兹格塘错流域50年来湖泊水量对气候变化响应的模拟研究[J].地球科学与环境学报, 2011, 33(3):282-287. Shen H D, Yu G.Simulation study on hydrological response of water quantity to climate change in Zigetang lake of Tibetan Plateau during the past 50 years[J].Journal of Earth Sciences and Environment, 2011, 33(3):282-287.

[18] 朱新军, 王中根, 李建新, 等.SWAT模型在漳卫河流域应用研究[J].地理科学研究进展, 2006, 25(5):105-111. Zhu X J, Wang Z G, Li J X, et al.Applications of SWAT model in Zhangwei River basin[J].Progress in Geography, 2006, 25(5):105-111.

[19] 蔡永明, 张科利, 李双才, 等.不同粒径制间土壤质地资料的转换问题研究[J].土壤学报, 2003, 40(4):511-517. Cai Y M, Zhang K L, Li S C, et al.Study on the conversion of different soils texture[J].Acta Pedologica Sinica, 2003, 40(4):511-517.

[20] 吕喜玺, 沈荣明.土壤可蚀性因子K值的初步研究[J].水土保持学报, 1992, 6(1):63-70. Lü X X, Shen R M.A preliminary study on the values K of soil erosibility factor[J].Journal of Soil and Water Conservation, 1992, 6(1):63-70.

[21] Morris M D.Factorial sampling plans for preliminary computational experiments[J].Technometrics, 1991, 33(2):161-174.

[1] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[2] 李根军, 杨雪松, 张兴, 李晓民, 李得林, 杜程. ZY1-02D高光谱数据在地质矿产调查中的应用与分析[J]. 国土资源遥感, 2021, 33(2): 134-140.
[3] 刘玉芳, 邹亚荣, 梁超. 溢油阻尼散射机制遥感监测研究进展[J]. 国土资源遥感, 2020, 32(3): 1-7.
[4] 孙小芳. 结合目标分割的高光谱城市地物分类[J]. 国土资源遥感, 2017, 29(3): 171-175.
[5] 王平平, 田淑芳. 基于WorldView2数据的岩性信息增强方法——以内蒙古扎嘎乌苏地区为例[J]. 国土资源遥感, 2016, 28(4): 176-184.
[6] 柴颖, 阮仁宗, 柴国武, 傅巧妮. 基于光谱特征的湿地植物种类识别[J]. 国土资源遥感, 2016, 28(3): 86-90.
[7] 许章华, 刘健, 陈崇成, 余坤勇, 黄旭影, 王美雅. 松毛虫危害下的马尾松林冠层光谱特征可辨性分析[J]. 国土资源遥感, 2016, 28(2): 41-47.
[8] 关红, 贾科利, 张至楠, 马欣. 盐渍化土壤光谱特征分析与建模[J]. 国土资源遥感, 2015, 27(2): 100-104.
[9] 张利华. 基于ALOS影像的内蒙古杭锦后旗土地盐渍化程度分级[J]. 国土资源遥感, 2015, 27(1): 121-126.
[10] 周林滔, 杨国范, 赵福强, 杜娟. EMD与分形相结合的遥感影像水体信息提取方法[J]. 国土资源遥感, 2014, 26(4): 41-45.
[11] 盖颖颖, 周斌, 孙元芳, 周燕. 基于HJ-CCD数据的海面溢油提取方法研究[J]. 国土资源遥感, 2014, 26(2): 99-104.
[12] 刘丙新, 李颖, 高超. 基于机载多光谱遥感数据的溢油信息提取方法[J]. 国土资源遥感, 2014, 26(1): 42-46.
[13] 何亮柱, 洪金益, 张建国, 邹胜武, 朱莉莉. 基于IKONOS数据的矿山开发占地信息提取[J]. 国土资源遥感, 2013, 25(1): 150-154.
[14] 梁树能, 甘甫平, 闫柏锟, 王润生, 杨苏明, 张志军. 白云母矿物成分与光谱特征的关系研究[J]. 国土资源遥感, 2012, 24(3): 111-115.
[15] 郝利娜, 张志, 何文熹, 陈腾. 鄂东南尾矿库高分辨率遥感图像识别因子研究[J]. 国土资源遥感, 2012, 24(3): 154-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发