Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 55-65    DOI: 10.6046/gtzyyg.2020233
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果
胡新宇1,2(), 许章华1,2,3,4,5,6(), 陈文慧1,2, 陈秋霞7, 王琳1,2,3,4, 刘辉1,2,3,4, 刘智才1,2,3,4
1.福州大学环境与资源学院,福州 350108
2.福州大学地理与生态环境研究中心,福州 350108
3.空间数据挖掘与信息共享教育部重点实验室,福州 350108
4.福建省水土流失遥感监测评估与灾害防治重点实验室,福州 350108
5.3S技术与资源优化利用福建省高校重点实验室,福州 350002
6.福州大学信息与通信工程博士后科研流动站, 福州 350108
7.福建农林大学公共管理学院,福州 350002
Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image
HU Xinyu1,2(), XU Zhanghua1,2,3,4,5,6(), CHEN Wenhui1,2, CHEN Qiuxia7, WANG Lin1,2,3,4, LIU Hui1,2,3,4, LIU Zhicai1,2,3,4
1. School of Environment and Resources, Fuzhou University, Fuzhou 350108, China
2. Research Center of Geography and Ecological Enviroment, Fuzhou University Fuzhou 350108, China
3. Key Laboratory of Spatial Data Mining and Information Sharing, Ministry of Education, Fuzhou 350108, China
4. Key Laboratory of Remote Sensing Monitoring and Assessment and Disaster Prevention of Soil and Water Loss, Fujian Province, Fuzhou 350108, China
5. University Key Lab for Geomatics Technology & Optimize Resource Utilization in Fujian Province, Fuzhou 350002, China;
6. Postdoctoral Research Station of Information and Communication Engineering, Fuzhou University, Fuzhou 350108, China
7. School of Public Administration, Fujian Agriculture and Forestry University, Fuzhou 350002, China
全文: PDF(9435 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

开展高光谱遥感影像的阴影检测研究有助于去除阴影,并进一步发挥其高光谱分辨率优势。以多角度高光谱影像PROBA/CHRIS为数据源,尝试从增大明亮区植被、阴影区植被、水体区3种典型地物间光谱的差异入手,利用连续投影算法(successive projection algorithm,SPA)选取特征波段,并分析典型地物在CHRIS影像原始波段及归一化差值植被指数上的光谱特征,由此构建该影像的归一化阴影植被指数(normalized shaded vegetation index,NSVI)。基于步长法设置合理阈值,对影像予以分类,并从分类精度及光谱差异增强效果两个角度评价NSVI对CHRIS影像阴影的检测能力。结果表明: B9和B15可作为构建CHRIS影像NSVI的特征波段; 基于NSVI阈值法对CHRIS多角度影像予以分类,各角度影像3种地物的分类精度均在94%以上,总Kappa均大于0.89,0°影像的分类效果最佳; 经掩模获取分类后3种地物的子影像,子影像光谱均值有差异,但考虑标准差后则发现其光谱重叠现象较为明显,表明NSVI可增强典型地物间的光谱差异,提高了光谱混淆像元间的可分性。通过进一步比较NSVI与归一化阴影指数和阴影指数的阴影检测效果,亦证明了NSVI的阴影检测能力,说明所构建的NSVI能够应用于PROBA/CHRIS高光谱影像的阴影检测,可为该影像的阴影去除及阴影信息修复等工作提供重要支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡新宇
许章华
陈文慧
陈秋霞
王琳
刘辉
刘智才
关键词 PROBA/CHRIS影像归一化阴影植被指数NSVI阴影检测高光谱遥感光谱特征    
Abstract

Shadow is a common interference factor in remote sensing image interpretation in mountainous and hilly areas. The study of shadow detection in hyperspectral remote sensing images is helpful to removing shadow and giving full play to its advantage of hyperspectral resolution. Taking the multi-angle hyperspectral image PROBA/CHRIS as the data source, this paper tries to increase the spectral differences among three typical ground objects, namely, bright area vegetation, shadow area vegetation and water area, selects the characteristic bands by using the sequential projection algorithm (SPA), and analyzes the spectral characteristics of typical ground objects in the original band of CHRIS image and normalized difference vegetation index. Therefore, the normalized shaded vegetation index (NSVI) of the image is constructed. The reasonable threshold is set based on the step-size method, and the images are classified. The ability of NSVI to detect CHRIS shadow is evaluated from two aspects of classification accuracy and spectral difference enhancement effect. The results show that B9 and B15 can be used as the characteristic bands for constructing NSVI of CHRIS images by using SPA to select the band subset with the smallest root-mean-square error (RMSE) and discard the edge bands. CHRIS multi-angle images are classified based on NSVI threshold method. The classification accuracy of three kinds of land in each angle image is above 94%, and the total Kappa is higher than 0.89. The classification effect of 0° image is the best. The sub-images of the three classified land objects are obtained through the mask, and the spectral mean values of the sub-images are different. However, considering the standard deviation, it is found that the spectral overlap phenomenon is obvious, which indicates that NSVI can enhance the spectral differences among typical land objects and improve the separability between spectral confusion pixels. By further comparing the shadow detection effects of NSVI with NDUI and SI, it also proves the shadow detection ability of NSVI, which shows that the constructed NSVI can be applied to shadow detection of PROBA/CHRIS hyperspectral image and can provide important support for shadow removal and shadow information restoration of this image.

Key wordsPROBA/CHRIS image    normalized shaded vegetation index (NSVI)    shadow detection    hyperspectral remote sensing    spectral characteristics
收稿日期: 2020-07-29      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:国家自然科学基金项目“毛竹林刚竹毒蛾危害的蔓延机制及模拟研究”(42071300);“刚竹毒蛾危害下的毛竹林遥感响应机理研究”(41501361);福建省自然科学基金面上项目“基于XGBoost-CA的毛竹林刚竹毒蛾危害蔓延模拟研究”(2020J01504);中国博士后面上基金一等资助项目“刚竹毒蛾危害下的毛竹林高光谱数据特征挖掘研究”(2018M630728);3S技术与资源优化利用福建省高校重点实验室开放课题“森林生态系统健康诊断及其与景观格局的生态效应研究”(fafugeo201901);晋江市福大科教园区发展中心科研项目“刚竹毒蛾侵染致毛竹林异常的PROBA/CHRIS数据特征挖掘”(2019-JJFDKY-17);中国科学院战略性先导科技专项“美丽中国生态文明建设科技工程”(XDA23100202);福建省自然科学基金面上项目“福州新区生态本底遥感调查及控制线划定研究”(2016J01188)
通讯作者: 许章华
作者简介: 胡新宇(1996-),男,硕士研究生,研究方向为资源环境遥感。Email: 386311895@163.com
引用本文:   
胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020233      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/55
Fig.1  预处理后各角度B14(R),B6(G),B2(B)合成影像
名称 代表波段 中心波长/nm
B1 490.8
绿 B2 552.1
B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13 632.5,670.4,681.5,690.0,695.9,701.8,707.9,714.1,720.3,736.6,746.8
近红外 B14,B15,B16,
B17,B18
753.8,760.8,779.0,790.3,798.0
Tab.1  依据波谱范围归类波段
Fig.2  不同角度影像明亮区植被、阴影区植被、水体区各波段比较
Fig.3  不同角度影像NDVI取值
Fig.4  各角度影像NDVI及其直方图
Fig.5  各角度影像NSVI及其直方图
角度/
(°)
NDVI直方
图峰度
NSVI直方
图峰度
NDVI直方
图偏度
NSVI直方
图偏度
0 7.255 -0.250 -2.264 0.573
36 3.252 -0.198 -1.697 0.489
-36 3.093 -0.216 -1.560 0.664
55 7.329 -0.198 -1.968 0.223
-55 4.396 -0.020 -1.640 0.539
Tab.2  各角度影像NDVI与NSVI直方图峰度与偏度对比
Fig.6  步长法选取阈值结果
Fig.7  5个角度影像分类结果
类型 36° -36° 55° -55°
明亮区植被 NSVI≥0.28 NSVI≥0.26 NSVI≥0.26 NSVI≥0.32 NSVI≥0.32
阴影区植被 0.06<NSVI<0.28 0.1<NSVI<0.26 0.1<NSVI<0.26 0.12<NSVI<0.32 0.12<NSVI<0.32
水体区 NSVII≤0.06 NSVI≤0.1 NSVI≤0.1 NSVI≤0.12 NSVI≤0.12
Tab.3  明亮区植被、阴影区植被及水体区分类最佳阈值确定
角度/
(°)
类别 生产者
精度/%
使用者
精度/%
总精度/% Kappa
0 明亮区植被 92.91 99.16 96.33 0.938 2
阴影区植被 99.28 94.52
水体区 97.06 94.29
36 明亮区植被 91.41 98.32 95.67 0.926 9
阴影区植被 98.56 93.84
水体区 100.00 94.29
-36 明亮区植被 91.41 98.32 95.67 0.927 6
阴影区植被 98.56 93.84
水体区 100.00 94.29
55 明亮区植被 93.55 97.48 95.67 0.927 6
阴影区植被 97.14 93.79
水体区 91.67 91.67
-55 明亮区植被 93.44 95.00 94.02 0.899 5
阴影区植被 95.10 93.79
水体区 91.67 91.67
Tab.4  5个角度影像地物分类精度评估
Fig.8-1  5个角度影像3种地物波段均值及标准差比较
Fig.8-2  5个角度影像3种地物波段均值及标准差比较
Fig.9  NDUI和SI阴影区监测结果
Fig.10  不同方法阴影检测比较
区域 原始影像 NSVI指数 NDUI指数 SI指数
水体区域
多阴影区域
Tab.5  不同区域阴影检测结果放大
[1] 陈一祥, 秦昆, 胡忠文, 等. 一种高分影像建筑区分块表示与合并提取方法[J]. 武汉大学学报(信息科学版), 2019, 44(6):908-916.
Chen Y X, Qin K, Hu Z W, et al. Built-up extraction based on patch representation and for high-resolution satellite images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6):908-916.
[2] Silvoster M L, Govindan V K. Enhanced CNN based electron microscopy image segmentation[J]. Cybernetics & Information Technologies, 2013, 12(2):84-97.
[3] Dong S G, Qin J X, Guo Y K. Shadow detection method for high-resolution remote sensing images supported by generalized stereoscopic image pair[J]. Jouenal of Electronic Measurement and Instrumentation. 2019, 33(3):105-111.
[4] Vupparaboina K K, Dansingani K K, Goud A, et al. Quantitative shadow compensated optical coherence tomography of choroidal vasculature[J]. Scientific Reports, 2018, 8(1):6461.
doi: 10.1038/s41598-018-24577-8 pmid: 29691426
[5] Jinxiang S, Xuan J I. Cloud and cloud shadow multi-feature collaborative detection from remote sensing image[J]. Journal of Geo-Information Science, 2016, 18(5):599-605.
[6] Dare P M. Shadow analysis in high-resolution satellite imagery of urban area[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(2):169-177.
[7] Otsu N. A threshold selection technique from grey-level histograms[J]. IEEE Transaction Systems & Man and Cybernetics, 2007, 9(1):62-66.
[8] Etemadnia H, Alsharif M R. Automatic image shadow identification using LPF in homomorphic processing system[C]// Proceedings of VII Digital Image Computing: Techniques and Applications,Sydney:Committee of DICTA, 2003:429-438.
[9] Tsai V J D. A comparative study on shadow compensation of color aerial images in invariant color models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6):1661-1671.
doi: 10.1109/TGRS.2006.869980
[10] Arévalo V, González J, Ambrosio G. Shadow detection in colour high-resolution satellite images[J]. International Journal of Remote Sensing, 2008, 29(7):1945-1963.
doi: 10.1080/01431160701395302
[11] Martel-Brisson N, André Z. Learning and removing cast shadow through a multidistribution approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(7):1133-1146.
pmid: 17496373
[12] 夏怀英, 郭平. 基于统计混合模型的遥感影像阴影检测[J]. 遥感学报, 2011, 15(4):778-791.
Xia H Y, Guo P. A shadow detection of remote sensing images based on statistical texture features[J]. Journal of Remote Sensing. 2011, 15(4):778-791.
[13] 王玥, 王树根. 高分辨率遥感影像阴影检测与补偿的主成分分析方法[J]. 应用科学学报, 2006, 31(8):663.
Wang Y, Wang S G. Detection and compensation of shadow in high resolution remote sensing images using PCA[J]. Journal of Applied Sciences, 2006, 31(8):663.
[14] 许章华, 刘健, 余坤勇, 等. 阴影植被指数SVI的构建及其在四种遥感影像中的应用效果[J]. 光谱学与光谱分析, 2013, 33(12):3359-3365.
Xu Z H, Liu J, Yu K Y, et al. Construction of vegetation shadow index (SVI) and application effects in four remote sensing images[J]. Spectroscopy and Spectral Analysis, 2013, 33(12):3359-3365.
[15] 许章华, 林璐, 王前锋, 等. 归一化阴影植被指数NSVI的构建及其应用效果[J]. 红外与毫米波学报, 2018, 37(2):154-162.
Xu Z H, Lin L, Wang Q F, et al. Construction and application effects of normalized shaded vegetation index(NSVI)[J]. Infrared Millim Waves, 2018, 37(2):154-162.
[16] 陈云浩, 王思佳, 赵逸飞, 等. 农业高光谱遥感研究进展及发展趋势[J]. 地理信息科学, 2019, 35(5):1-8.
Chen Y H, Wang S J, Zhao Y F, et al. Progress and development trend of agricultural hyperspectral remote sensing research[J]. Geography and Geo-Information Science, 2019, 35(5):1-8.
[17] 张淳民, 穆廷魁, 穆廷昱, 等. 高光谱遥感技术发展与展望[J]. 航天返回与遥感, 2018, 39(3):104-114.
Zhang C M, Mu T K, Yan T Y, et al. Overview of hyperspectral remote sensing technology[J]. Spacecraft Recoverry and Remote Sensing, 2018, 39(3):104-114.
[18] Siciliano D, Wasson K, Potts D C. Evaluating hyperspectral imaging of wetland vegetation as a tool for detecting estuarine nutrient enrichment[J]. Remote Sensing of Enviroment, 2008, 112(11):4020-4033.
doi: 10.1016/j.rse.2008.05.019
[19] Adam E, Mutanga O, Rugege D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation:A review[J]. Wetlands Ecology and Management, 2010, 18(3):281-296.
doi: 10.1007/s11273-009-9169-z
[20] Andrews M, Roper T. Shadow modelling and correction techniques in hyperspectral imaging[J]. Electronics Letters, 2013, 49(7):458-460.
doi: 10.1049/ell2.v49.7
[21] Qiao X, Yuan D, Li H. Urban shadow detection and classification using hyperspectral image[J]. Journal of the Indian Society of Remote Sensing, 2017, 45(6):945-952.
doi: 10.1007/s12524-016-0649-3
[22] 张红梅, 王大卫, 高杨, 等. 基于OLI数据与决策树法的去山体阴影水体信息提取研究[J]. 测绘工程, 2017, 26(11):45-48.
Zhang H M, Wang D W, Gao Y, et al. A study of extraction method of mountain surface water based on OLI data and decision tree method[J]. Engineering of Surveying and Mapping, 2017, 26(11):45-48.
[23] Guimbatan R, Baguilat T. Misunderstanding the notion of conservation in the philippine rice terraces-cultural landscapes[J]. International Social Science Journal, 2006, 58:59-67.
doi: 10.1111/issj.2006.58.issue-187
[24] 曹斌, 谭炳香. 多角度高光谱CHRIS数据特点及预处理研究[J]. 安徽农业科学, 2010, 38(22):12289-12294.
Cao B, Tan B X. Characteristics and preprocessing of multi-angle hyperspectral CHRIS data[J]. Journal of Anhui Agricultural Sciences, 2010, 38(22):12289-12294.
[25] 司绍博, 周真, 杨旭, 等. 紫外-可见光谱法定量检测牛乳中大肠杆菌总数[J]. 分析试验室, 2019, 38(7):782-786.
Si S B, Zhou Z, Yang X, et al. Quantitative detection of escherichia coli in milk by UV-VIS spectroscopy[J]. Chinese Journal of Analysis Laboratory, 2019, 38(7):782-786.
[26] Soares S, Gomes A A. The successive projections algorithm[J]. Trends in Analytical Chemistry, 2013, 42(42):84-98.
doi: 10.1016/j.trac.2012.09.006
[27] 刘明博, 唐延林, 李晓利, 等. 水稻叶片氮含量光谱监测中使用连续投影算法的可行性[J]. 红外与激光工程, 2014, 43(3):1265-1271.
Liu M B, Tang Y L, Li X L, et al. Feasibility of using successive projection algorithm in spectral monitoring of rice leaves nitrogen contents[J]. Infrared and Engineering, 2014, 43(3):1265-1271.
[28] Fu G, Sun W, Li S W, et al. Response of plant growth and biomass accumulation to short-term experimental warming in a highland barley system of the tibet[J]. Journal of Resources and Ecology, 2017, 8(1):42-49.
doi: 10.5814/j.issn.1674-764x.2017.01.006
[29] 徐涵秋. 基于压缩数据维的城市建筑用地遥感信息提取[J]. 中国图象图形学报, 2005, 10(2):223-229.
Xu H Q. Remote sensing information extraction of urban built up land based on a data dimension compression technique[J]. Journal of Image and Graphics, 2005, 10(2):223-229.
[30] 施婷婷, 徐涵秋, 王帅. ZY-3 MUX传感器数据的缨帽变换系数推导[J]. 遥感学报, 2019, 23(3):514-525.
Shi T T, Xu H Q, Wang S. Derivation of tasselled cap transformation coefficients for ZY-3 MUX sensor data[J]. Journal of Remote Sensing, 2019, 23(3):514-525.
[31] 郭仲伟, 吴朝阳, 汪箫悦. 基于卫星遥感数据的森林病虫害监测与评价[J]. 地理研究, 2019, 38(4):831-843.
doi: 10.11821/dlyj020180299
Guo Z W, Wu C Y, Wang X Y, et al. Forest insect-disease monitoring and estimation based on satellite remote sensing data[J]. Geographical Research, 2019, 38(4):831-843.
[32] 李小曼, 王刚, 田杰. TM影像中水体提取方法研究[J]. 西南农业大学学报(自然科学版), 2006, 28(4):580-582.
Li X M, Wang G, Tian J. Study of the method of picking-up small water-bodies in Landsat TM remote sense image[J]. Journal of Southwest Agriculture University(Nature Science), 2006, 28(4):580-582.
[33] 李艳华, 丁建丽, 闫人华. 基于国产GF-1遥感影像的山区细小水体提取方法研究[J]. 资源科学, 2015, 37(2):408-416.
Li Y H, Ding J L, Yan R H. Extraction of small river information based on China-made GF-1 remote sense images[J]. Resources Science, 2015, 37(2):408-416.
[34] Wang X P, Jing M C, Ju W M. Photochemical reflectance index (PRI) can be used to improve the relationship between gross primary productivity (GPP) and sun-induced chlorophyll fluorescence (SIF)[J]. Remote Sensing of Environment, 2020, 246:111888.
doi: 10.1016/j.rse.2020.111888
[1] 王嘉芃, 徐建国, 沈家晓, 张登荣. 德兴铜矿矿山重金属污染修复效果高光谱遥感评价[J]. 自然资源遥感, 2023, 35(3): 284-291.
[2] 李志新, 王梦飞, 贾伟洁, 纪松, 王宇飞. 一种结合阴影信息的建筑物层数识别方法[J]. 自然资源遥感, 2023, 35(3): 97-106.
[3] 李天驰, 王道儒, 赵亮, 凡仁福. 基于Landsat8遥感数据的西沙群岛永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2): 70-79.
[4] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[5] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[6] 高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
[7] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[8] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
[9] 李根军, 杨雪松, 张兴, 李晓民, 李得林, 杜程. ZY1-02D高光谱数据在地质矿产调查中的应用与分析[J]. 国土资源遥感, 2021, 33(2): 134-140.
[10] 仇一帆, 柴登峰. 无人工标注数据的Landsat影像云检测深度学习方法[J]. 国土资源遥感, 2021, 33(1): 102-107.
[11] 孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
[12] 王瑞军, 张春雷, 孙永彬, 王诜, 董双发, 王永军, 闫柏琨. 高光谱在甘肃红山多金属找矿模型构建中的应用[J]. 国土资源遥感, 2020, 32(3): 222-231.
[13] 张东辉, 赵英俊, 秦凯. 典型目标地面光谱信息系统设计与实现[J]. 国土资源遥感, 2018, 30(4): 206-211.
[14] 孙小芳. 结合目标分割的高光谱城市地物分类[J]. 国土资源遥感, 2017, 29(3): 171-175.
[15] 任广利, 杨敏, 李健强, 高婷, 梁楠, 易欢, 杨军录. 高光谱蚀变信息在金矿找矿预测中的应用研究——以北山方山口金矿线索为例[J]. 国土资源遥感, 2017, 29(3): 182-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发