Please wait a minute...
 
国土资源遥感  2015, Vol. 27 Issue (1): 121-126    DOI: 10.6046/gtzyyg.2015.01.19
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于ALOS影像的内蒙古杭锦后旗土地盐渍化程度分级
张利华
中国地质大学地球科学学院地理系, 武汉 430074
Study of land salinization of Hanggin Rear Banner in Inner Mongolia based on ALOS image
ZHANG Lihua
Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
全文: PDF(3443 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 土地盐渍化是影响区域生态环境质量和农业生产安全的重要因素,掌握其区域分布规律对盐渍化的预防和治理具有重要意义。基于ALOS影像和实地调查、土壤样品分析数据建立内蒙古杭锦后旗农用地盐渍化等级划分标准和遥感解译标志,分析了不同地物在不同波段的光谱特征,获得杭锦后旗土地盐渍化等级分类图。结果表明,杭锦后旗农用地盐渍化严重,中度以上盐渍化农用地占土地总面积的15.76%,占农用地总面积的25.68%; 重度以上盐渍化农用地占土地总面积的3.28%,占农用地总面积的5.33%。研究区微度和轻度盐渍化农用地分布最广,中度盐渍化农用地分布比较分散,重度盐渍化农用地和盐土则主要沿灌渠和海子边缘分布,由西北向东南重度以上盐渍化土地比例有增加的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙知文
于鹏珊
夏浪
武胜利
蒋玲梅
郭镭
关键词 被动微波遥感微波辐射计雪深(SD)雪水当量(SWE)反演算法    
Abstract:Land salinization can lead to the degradation and disappearance of soil resources, so it is an important factor affecting the eco-environmental quality and agricultural production security, especially in arid and semi-arid environments. Land salinization is a main environmental problem in Hetao irrigation area of Inner Mongolia including Hanggin Rear Banner, because of arid climate, high salinity soil material, highly mineralized groundwater, and high groundwater level caused by improper irrigation and drainage. In this study, the intensity of land salinization was divided into five grades according to lab data of surface soil samples. Interpreting marks and spectral characteristics of different landscapes in Hanggin Rear Banner were built and analyzed by using ERDAS, fused ALOS image, field investigation and lab data of surface soil samples. The map for classification of land salinization in Hanggin Rear Banner was compiled based on interpreting marks, spectral characteristics and supervised classification method. The results indicate that the area of slightly salinized land (total content of water-soluble salt is 0~0.3%), weakly salinized land (total content of water-soluble salt is 0.3%~0.5%), moderately salinized land (total content of water-soluble salt is 0.5%~1.0%), strongly salinized land (total content of water-soluble salt is 1.0%~1.6%) and saline soil (total content of water-soluble salt is more than 1.6%) are 181.38 km2, 658.45 km2, 213.96 km2, 41.86 km2 and 28.38 km2 respectively. The land whose content of water-soluble salt is lower than 0.5% has little influence on agricultural production. The salinized land possesses as high as 55.02% of the total area in Hanggin Rear Banner. The salinized agricultural land with water-soluble salt content more than 0.5% accounts for 15.76% of the total area and 25.68% of the total agricultural land respectively, and the salinized places are distributed dispersedly among agricultural lands. The salinized agricultural land with water-soluble salt content more than 1.0% accounts for 3.28% of the total area and 5.33% of the total agricultural land respectively, and the salinized places are mainly distributed around irrigation channels and lakes, with their proportion tending to increase from northwest to southeast. The results have an important significance for land salinization control and eco-environment improvement in the Hetao irrigation area of Inner Mongolia.
Key wordspassive microwave remote sensing    microwave radiometer    snow depth(SD)    snow water equivalent(SWE)    inversion algorithm
收稿日期: 2013-12-11      出版日期: 2014-12-08
:  X87  
基金资助:国家杰出青年科学基金项目(编号: 40425001)及中央高校基本科研业务费专项资金项目(编号: 2011019017)共同资助。
作者简介: 张利华(1974-),女,副教授,博士,主要从事环境遥感及土地退化等方面的研究。Email: huaz83@gmail.com。
引用本文:   
张利华. 基于ALOS影像的内蒙古杭锦后旗土地盐渍化程度分级[J]. 国土资源遥感, 2015, 27(1): 121-126.
ZHANG Lihua. Study of land salinization of Hanggin Rear Banner in Inner Mongolia based on ALOS image. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 121-126.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2015.01.19      或      https://www.gtzyyg.com/CN/Y2015/V27/I1/121
[1] 俞仁培.对盐渍土资源开发利用的思考[J].土壤通报,2001,32:138-140. Yu R P.Ideas about exploitation and utilization of saline soil resources[J].Chinese Journal of Soil Science,2001,32:138-140.
[2] 姚远,丁建丽,阿尔达克·克里木,等.基于实测高光谱和电磁感应数据的区域土壤盐渍化遥感监测研究[J].光谱学与光谱分析,2013,33(7):1917-1921. Yao Y,Ding J L,Ardak K,et al.Research on remote sensing monitoring of soil salinization based on measured hyperspectral and EM38 data[J].Spectroscopy and Spectral Analysis,2013,33(7):1917-1921.
[3] 王宏,范英霞,高珊,等.基于3S技术的干旱区绿洲土壤盐渍化动态监测[J].地理空间信息,2013,11(1):131-134. Wang H,Fan Y X,Gao S,et al.Dynamic monitoring of soil salinization in the arid region oasis based on the 3S technology[J].Geospatial Information,2013,11(1):131-134.
[4] 亢庆,张增祥,赵晓丽,等.基于遥感技术的干旱区土地盐碱化分级[J].干旱区资源与环境,2006,20(3):144-148. Kang Q,Zhang Z X,Zhao X L,et al.Remote sensing application to rapid survey of land salinization based on multisource images[J].Journal of Arid Land Resources and Environment,2006,20(3):144-148.
[5] Yu R H,Liu T X,Xu Y P,et al.Analysis of salinization dynamics by remote sensing in Hetao irrigation district of north China[J].Agricultural Water Management,2010,97(12):1952-1960.
[6] 吴建生,张玉清,刘珍环,等.新疆焉耆县土地盐渍化遥感监测[J].干旱区地理,2010,33(2):251-257. Wu J S,Zhang Y Q,Liu Z H,et al.Land salinization monitoring with remote sensing on Yanqi County,Xinjiang[J].Arid Land Geography,2010,33(2):251-257.
[7] Rukhovich D I,Pankova E I,Chernousenko G I,et al.Long-term salinization dynamics in irrigated soils of the Golodnaya Steppe and methods of their assessment on the basis of remote sensing data[J].Eurasian Soil Science,2010,43(6):682-692.
[8] 王学全,高前兆,卢琦,等.内蒙古河套灌区水盐平衡与干排水脱盐分析[J].地理科学,2006,26(4):455-460. Wang X Q,Gao Q Z,Lu Q,et al.Salt-water balance and dry drainage desalting in Hetao irrigating area,Inner Mongolia[J].Scientia Geographica Sinica,2006,26(4):455-460.
[9] 管孝艳,王少丽,高占义,等.盐渍化灌区土壤盐分的时空变异特征及其与地下水埋深的关系[J].生态学报,2012,32(4):1202-1210. Guan X Y,Wang S L,Gao Z Y,et al.Spatio-temporal variability of soil salinity and its relationship with the depth to groundwater in salinization irrigation district[J].Acta Ecologica Sinica,2012,32(4):1202-1210.
[10] 安永清,屈永华,高鸿永,等.内蒙古河套灌区土壤盐碱化遥感监测方法研究[J].遥感技术与应用,2008,23(3):316-322. An Y Q,Qu Y H,Gao H Y,et al.Supervising the salted land distribution of Hetao irrigation area in Inner Mongolia by using remote sensing[J].Remote Sensing Technology and Application,2008,23(3):316-322.
[11] Lu S L,Zou L J,Shen X H,et al.Multi-spectral remote sensing image enhancement method based on PCA and IHS transformations[J].Journal of Zhejiang University Science,2011,12(6):453-460.
[12] 王广亮,李英成,曾钰,等.ALOS数据像素级融合方法比较[J].测绘科学,2008,33(6):121-124. Wang G L,Li Y C,Zeng Y,et al.Comparison and analysis of pixel-level image fusion algorithms applicable to ALOS data[J].Science of Surveying and Mapping,2008,33(6):121-124.
[13] 中华人民共和国水利部.GB/T50123-1999土工试验方法标准[S].北京:中国计划出版社,1999:31-41. Ministry of Water Resources of the People's Republic of China. GB/T50123-1999 Standard for Soil Test Method[S].Beijing:China Planning Publishing House,1999:31-41.
[1] 樊宪磊, 阎宏波, 瞿瑛. 基于HJ-1A/B CCD地表反照率估算方法比较与验证[J]. 国土资源遥感, 2019, 31(3): 123-131.
[2] 吴莹, 钱博, 王振会. 被动微波遥感观测资料干扰对地表参数反演的影响分析[J]. 国土资源遥感, 2017, 29(3): 176-181.
[3] 白淑英, 吴奇, 史建桥, 顾海敏. 青藏高原积雪深度时空分布与地形的关系[J]. 国土资源遥感, 2015, 27(4): 171-178.
[4] 孙知文, 于鹏珊, 夏浪, 武胜利, 蒋玲梅, 郭镭. 被动微波遥感积雪参数反演方法进展[J]. 国土资源遥感, 2015, 27(1): 9-15.
[5] 周芳成, 宋小宁, 李召良. 地表温度的被动微波遥感反演研究进展[J]. 国土资源遥感, 2014, 26(1): 1-7.
[6] 马红章, 刘素美, 朱晓波, 孙根云, 孙林, 柳钦火. 基于被动微波遥感技术的玉米冠层叶面积指数反演[J]. 国土资源遥感, 2013, 25(3): 66-71.
[7] 吴莹, 王振会. 被动微波遥感反演地表发射率研究进展[J]. 国土资源遥感, 2012, 24(4): 1-7.
[8] 李欣欣, 张立新, 蒋玲梅. 山区地形对被动微波遥感影响的研究进展[J]. 国土资源遥感, 2011, 23(3): 8-13.
[9] 李芹, 钟若飞. 模拟AMSR-E数据的地表多参数反演[J]. 国土资源遥感, 2011, 23(1): 42-47.
[10] 钟若飞, 郭华东, 王为民, 朱博勤. SZ-4飞船多模态传感器辐射模态数据处理与质量评价研究[J]. 国土资源遥感, 2004, 16(4): 19-22,32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发