Please wait a minute...
 
国土资源遥感  2014, Vol. 26 Issue (3): 117-124    DOI: 10.6046/gtzyyg.2014.03.19
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
植被对潮沟发育影响的遥感研究——以崇明东滩为例
郑宗生1,2, 周云轩2, 田波2, 王建1, 刘志国3
1. 华东师范大学河口海岸学国家重点实验室, 上海 200062;
2. 上海海洋大学海洋科学研究院数字海洋研究所, 上海 201306;
3. 国家海洋局东海信息中心, 上海 200137
Effects of vegetation on the dynamic of tidal creeks based on quantitative satellite remote sensing:A case study of Dongtan in Chongming
ZHENG Zongsheng1,2, ZHOU Yunxuan2, TIAN Bo2, WANG Jian1, LIU Zhiguo3
1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
2. Institute for Digital Ocean Research of Marine Science Institute, Shanghai Ocean University, Shanghai 201306, China;
3. East Sea Information Center, State Oceanic Administration, Shanghai 200137, China
全文: PDF(4186 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 根据现场测量,通过高分辨率航空图像提取崇明东滩潮沟的空间形态、植被类型及植被盖度指数。结合多时相卫星图像及海洋数值模式,利用水边线法及宽深比法反演潮沟沟底高程并构建了研究区潮沟三维地形,分析了植被对潮沟发育的影响。结果表明:1潮沟反演的均方根误差为0.545 m,且高潮滩反演精度高于低潮滩地区;2从低潮滩到高潮滩的潮沟深度先增大再减小,主要原因是高潮滩水动力条件较弱,加之植被根系的固滩作用,下蚀作用较弱,潮沟深度较浅,低潮滩由于水域开阔,水动力条件较弱,无植被覆盖侧蚀作用增强,潮沟变宽变浅;3潮沟深度空间分布表现出南深北浅的特征,崇明东滩潮沟密度与植被盖度呈现明显的负相关(r=0.560 4,p<0.02),在高盖度植被覆盖的潮滩地区潮沟大多不发育,潮沟密度较低。潮沟长度与植被类型表现出较强的相关关系,在互花米草-芦苇群落为优势的区域潮沟长度普遍比以海三棱藨草群落为优势的区域长。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈书琳
毕银丽
关键词 土地复垦遥感监测高光谱遥感生态修复    
Abstract:Tidal channels, vegetation types and FVC (fractional vegetation cover) were extracted from high resolution aerial images according to the field measurement. Combined with multi-temporal satellite images and numerical ocean model, the authors employed the waterline and the width-to-depth ratio methods to inverse the tide creek bottom elevation, with which the Dongtan 3D terrain of Chongming was constructed. The effects of vegetation on tidal creeks were analyzed and some conclusions were reached: 1 The root mean square error between the tidal channel calculation and the measured result is 0.545 m at Dongtan of Chongming, and the accuracy is higher at high tide beach than at the low tidal beach; 2 From low to high tide flat, tidal channel depth increases first and then decreases along the longitudinal profile. The shallow tidal creek at the high tidal flat results from the weakness of water dynamics and beach consolidation by the vegetation roots, where downward erosion is inhibited. On the other hand, tidal channel becomes wide and shallow at the low tidal flat owing to lateral erosion without vegetation cover and weak hydrodynamics; 3 Tidal channel depth is deep in the south and shallow in the south. The Dongtan tidal channel density and vegetation coverage show significant negative correlation (r=0.560 4, p<0.02), and tidal channel length has a significant corresponding relation with vegetation types. Tidal channel length is longer in Spartina alterniflora and reed communities than in Scirpus mariqueter areas. Tidal creeks are undeveloped in the tidal flat with high density vegetation coverage.
Key wordsland reclamation    remote sensing monitoring    hyperspectral remote sensing    ecological restoration
收稿日期: 2013-06-13      出版日期: 2014-07-01
:  TP737.1  
基金资助:上海市教委创新项目(编号:11YZ157)、华东师范大学河口海岸学国家重点实验室开发基金(编号:SKLEC201207)和山东省海洋生态环境与防灾减灾重点实验室资助项目(编号:201211)共同资助。
作者简介: 郑宗生(1979-),男,博士,副教授,主要从事海岸带遥感及海洋信息化研究。Email:zszheng@shou.edu.cn。
引用本文:   
郑宗生, 周云轩, 田波, 王建, 刘志国. 植被对潮沟发育影响的遥感研究——以崇明东滩为例[J]. 国土资源遥感, 2014, 26(3): 117-124.
ZHENG Zongsheng, ZHOU Yunxuan, TIAN Bo, WANG Jian, LIU Zhiguo. Effects of vegetation on the dynamic of tidal creeks based on quantitative satellite remote sensing:A case study of Dongtan in Chongming. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 117-124.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2014.03.19      或      https://www.gtzyyg.com/CN/Y2014/V26/I3/117
[1] 张忍顺,王雪瑜.江苏省淤泥质海岸潮沟系统[J].地理学报,1991,46(2):195-206. Zhang R S,Wang X Y.Tidal creek system on tidal mud flat of Jiangsu Province[J].Acta Geographica Sinica,1991,46(2):195-206.
[2] 时钟,陈吉余,虞志英.中国淤泥质潮滩沉积研究的进展[J].地球科学进展,1996,11(6):555-562. Shi Z,Chen J Y,Yu Z Y.Sedimentation on the intertidal mudflat in China:An overview[J].Advance in Earth Sciences,1996,11(6):555-562.
[3] 吴晓东,高抒.长江口潮间带九段沙浅滩潮水沟形态分析[J].海洋学报,2012,34(6):126-132. Wu X D,Gao S.A morphological analysis of tidal creek network patterns on the Jiuduansha Shoal in the Changjiang Estuary[J].Acta Oceanologica Sinica,2012,34(6):126-132.
[4] Novakowski K I.Geomorphic analysis of tidal creek networks[J].Water Resources Research,2004,40(5):1-13.
[5] Vandenbruwaene W,Meire P,Temmerman S.Formation and evolution of a tidal channel network within a constructed tidal marsh[J].Geomorphology,2012,151-152:114-125.
[6] Allen J R L.Morphodynamics of Holocene salt marshes:A review sketch from the Atlantic and Southern North Sea coasts of Europe[J].Quaternary Science Reviews,2000,19(12):1155-1231.
[7] Davidson-Arnott R G D,Proosdij D,Ollerhead J.Hydrodynamics and sedimentation in salt marshes:Examples from a macrotidal marsh,Bay of Fundy[J].Geomorphology,2002,48(1/3):209-231.
[8] 沈永明,张忍顺,王艳红.互花米草盐沼潮沟地貌特征[J].地理研究,2003,22(4):520-527. Shen Y M,Zhang R S,Wang Y H.The tidal creek character in salt marsh of spartina alterniflora loisel on strong tide coast[J].Geographical Research,2003,22(4):520-527.
[9] Fruergaard M,Andersen T J,Nielsen L H,et al.Punctuated sediment record resulting from channel migration in a shallow sand-dominated micro-tidal lagoon,Northern Wadden Sea,Denmark[J].Marine Geology,2011,280(1/4):91-104.
[10] Bryce S,Larcombe P,Ridd P V.Hydrodynamic and geomorphological controls on suspended sediment transport in mangrove creek systems,a case study:Cocoa Creek,Townsville,Australia[J].Estuarine,Coastal and Shelf Science,2003,56(3/4):415-431.
[11] Shi Z,Lamb H F,Collin R L.Geomorphic change of saltmarsh tidal creek networks in the Dyfi Estuary,Wales[J].Marine Geology,1995,128(1):73-83.
[12] Garofalo D.The influence of wetland vegetation on tidal stream channel migration and morphology[J]. Estuaries,1980,3(4):258-270.
[13] Pethick J S.Long-term accretion rates on tidal salt marshes[J].Journal of Sedimentary Petrology,1981,51(2):571-577.
[14] Yang S L,Ding P X,Chen S L.Changes in progradation rate of the tidal flats at the mouth of the Changjiang(Yangtze)River,China[J].Geomorphology,2001,38(1/2):167-180.
[15] Mason D C,Davenport I J,Flather R A.Interpolation of an intertidal digital elevation model from heighted shorelines:A case study in the Western Wash[J].Estuarine,Coastal and Shelf Science,1997,45(5):599-612.
[16] Mason D C,Davenport I J,Flather R A,et al.Cover A digital elevation model of the inter-tidal areas of the Wash,England,produced by the waterline method[J].International Journal of Remote Sensing,1998,19(8):1455-1460.
[17] 韩震,郭永飞,李睿,等.长江口淤泥质潮滩环形水边线信息提取方法研究[J].国土资源遥感,2010,22(4):64-66. Han Z,Guo Y F,Li R,et al.Research on the method for ring waterside line information extraction from mudflat in the Yangtze River Estuary[J].Remote Sensing for Land and Resources,2010,22(4):64-66.
[18] 郑宗生,周云轩,沈芳,等.基于DTM的水边线遥感信息提取方法[J].国土资源遥感,2007,19(2):56-59. Zheng Z S,Zhou Y X,Shen F,et al.Waterline extraction from remotely sensed images with DTM[J].Remote Sensing for Land and Resources,2007,19(2):56-59.
[19] 郑宗生,周云轩,田波,等.基于数字海图及遥感的近60年崇明东滩湿地演变分析[J].国土资源遥感,2013,25(1):130-136. Zheng Z S,Zhou Y X,Tian B,et al.Evolution analysis of Chongming Dongtan wetland in recent 60 years based on digital nautical chart and remote sensing[J].Remote Sensing for Land and Resources,2013,25(1):130-136.
[20] 高占国,张利权.盐沼植被光谱特征的间接排序识别分析[J].国土资源遥感,2006,18(2):51-56. Gao Z G,Zhang L Q.The identification of spectral characteristics of salt marsh vegetation using indirect ordination[J].Remote Sensing for Land and Resources,2006,18(2):51-56.
[21] Huang Y,Zhou Y X,Zheng Z S,et al.Two strategies for remote sensing classification accuracy improvement of salt marsh vegetation:A case study in Chongming Dongtan[C]//Qiu P H,Yiu C,Zhang H,et al.2nd International Congress on Image and Signal Processing.New York:IEEE,2009:3014-3020.
[22] Zeng X B,Dickinson R E,Walker A.Derivation and evaluation of global 1-Km fractional vegetation cover data for land modeling[J].Journal of Applies Meteorology,2000,39(6):826-839.
[23] 陈勇,何中发,黎兵,等.崇明东滩潮沟发育特征及其影响因素定量分析[J].吉林大学学报:地球科学版,2013,43(1):212-219. Chen Y,He Z F,Li B,et al.Spatial distribution of tidal creeks and quantitative analysis of its driving factors in Chongming Dongtan,Shanghai[J].Journal of Jilin University:Earth Science Edition,2013,43(1):212-219.
[1] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[2] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[3] 高文龙, 张圣微, 林汐, 雒萌, 任照怡. 煤矿开采中SOM的遥感估算和时空动态分析[J]. 自然资源遥感, 2021, 33(4): 235-242.
[4] 姜亚楠, 张欣, 张春雷, 仲诚诚, 赵俊芳. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
[5] 臧传凯, 沈芳, 杨正东. 基于无人机高光谱遥感的河湖水环境探测[J]. 自然资源遥感, 2021, 33(3): 45-53.
[6] 陈栋, 姚维岭. 基于ArcPy与定制ArcToolbox的矿山新增图斑自动编号及方法改进[J]. 国土资源遥感, 2021, 33(2): 262-269.
[7] 胡新宇, 许章华, 陈文慧, 陈秋霞, 王琳, 刘辉, 刘智才. 基于PROBA/CHRIS影像的归一化阴影植被指数NSVI构建与应用效果[J]. 国土资源遥感, 2021, 33(2): 55-65.
[8] 孙珂. 融合超像元与峰值密度特征的遥感影像分类[J]. 国土资源遥感, 2020, 32(4): 41-45.
[9] 汪洁, 刘小杨, 杨金中, 周英杰, 安娜, 王志晖. 基于国产高空间分辨率卫星数据的浙江省矿山环境恢复治理典型模式分析[J]. 国土资源遥感, 2020, 32(3): 216-221.
[10] 王瑞军, 张春雷, 孙永彬, 王诜, 董双发, 王永军, 闫柏琨. 高光谱在甘肃红山多金属找矿模型构建中的应用[J]. 国土资源遥感, 2020, 32(3): 222-231.
[11] 刁明光, 刘文静, 李静, 刘芳, 王彦佐. 矿山遥感监测矢量成果数据动态变化检测方法[J]. 国土资源遥感, 2020, 32(3): 240-246.
[12] 冯力力, 江利明, 柳林, 孙亚飞. 新疆克拉牙依拉克冰川变化(1973—2016)主被动遥感监测分析[J]. 国土资源遥感, 2020, 32(2): 162-169.
[13] 殷亚秋, 杨金中, 汪洁, 安娜, 姜赟. 长江经济带废弃矿山占损土地遥感调查与生态修复对策[J]. 国土资源遥感, 2020, 32(2): 170-176.
[14] 石海岗, 梁春利, 张建永, 张春雷, 程旭. 岸线变迁对田湾核电站温排水影响遥感调查[J]. 国土资源遥感, 2020, 32(2): 196-203.
[15] 刘晰, 郝利娜, 杨显华, 黄洁, 张志, 杨武年. 矿山遥感监测指标快速统计方法研究与实现[J]. 国土资源遥感, 2020, 32(2): 259-265.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发