Please wait a minute...
 
国土资源遥感  2017, Vol. 29 Issue (1): 186-191    DOI: 10.6046/gtzyyg.2017.01.28
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于Hapke模型混合岩矿粉末反射率光谱模拟
王喆1, 赵哲2, 闫柏琨1, 杨苏明1
1. 中国国土资源航空物探遥感中心, 北京 100083;
2. 河北省煤田地质局, 石家庄 050085
Simulation of bi-directional reflectance on mixed minerals based on Hapke photometric model
WANG Zhe1, ZHAO Zhe2, YAN Bokun1, YANG Suming1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Hebei Bureau of Coal Geological Exploration, Shijiazhuang 050085, China
全文: PDF(1615 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

Hapke岩矿二向反射率光谱定量模型是研究混合矿物光谱的有利工具,而国内对该模型的基础研究较少。通过4组室内混合矿物光谱数据来研究该模型在模拟混合矿物光谱时的准确性与存在的问题,进而探讨混合矿物光谱的特征规律。研究表明,在模拟混合矿物光谱方面不论是各向同性,还是各向异性的Hapke模型均有很高的精度,权重调整后4组各向同性模型的模拟结果均方根误差(RMSE)均值为0.014 4,相关系数(R)均值为0.994 7,4组各向异性模型的模拟结果RMSE均值为0.008 4,R均值为0.994 4,说明该模型是优异的混合光谱分析手段;但模型对暗色矿物适用性较差,如当混合矿物中含有黑云母时模拟精度较低;混合矿物的光谱谱形需要针对矿物组成进行具体分析,其中所占质量分数较高的矿物并不一定能主导混合矿物的光谱谱形,而低反射率的矿物在混合矿物光谱中发挥的作用远大于其质量分数的比重。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宇翼
赵军利
王苗苗
刘勇
关键词 面向对象的影像分析J48算法决策树土地覆被分类    
Abstract

Hapke photometric model is a useful tool for studying the spectra of mixed minerals. However, there are still some improvable things, and domestic research still lags far behind that of foreign countries. This paper focuses on the characteristics of surface minerals through 4 groups of spectroscopic tests in laboratory, and then discusses and points out the accuracy of the Hapke photometric model when simulating the spectra of mixed minerals. The mean of root mean square errors (RMSE) of the 4 groups by using IMSA model is 0.014 4, and the mean of correlation coefficients (R) is 0.994 7. The mean of RMSE of the 4 groups by using AMSA model is 0.008 4, and the mean of R is 0.994 4. These data suggest that IMSA model and AMSA model have a very high precision and can be a good means to simulate spectral mixture of mixed minerals. Nevertheless, the experiment results show that, when the mixed minerals contain biotite, the accuracy is not satisfactory, but the accuracy of simulation can be improved by adjusting the weight of biotite. Spectral shape of mixed minerals needs a specific analysis of compositions of the mixed mineral, for instance, a particular mineral which possesses a higher mass fraction in the mixed minerals may not play the leading role in the spectral shape, while the mineral of low reflectivity may play a more important role.

Key wordsobject-based image analysis (OBIA)    J48 algorithm    decision tree    land cover classification
收稿日期: 2015-09-08      出版日期: 2017-01-23
:  TP79  
基金资助:

中国地质调查局地质调查项目“高光谱地质调查技术方法研究”(编号:12120115040801)资助。

通讯作者: 闫柏琨(1977-),博士,高级工程师,主要从事高光谱与遥感地质应用研究。Email:yanbokun_2006@yahoo.com.cn。
作者简介: 王喆(1989-),助理工程师,主要从事遥感地质应用研究。Email:wangzhe_cnbj@163.com。
引用本文:   
王喆, 赵哲, 闫柏琨, 杨苏明. 基于Hapke模型混合岩矿粉末反射率光谱模拟[J]. 国土资源遥感, 2017, 29(1): 186-191.
WANG Zhe, ZHAO Zhe, YAN Bokun, YANG Suming. Simulation of bi-directional reflectance on mixed minerals based on Hapke photometric model. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 186-191.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2017.01.28      或      https://www.gtzyyg.com/CN/Y2017/V29/I1/186

[1] 代晶晶,李庆亭.基于Hapke和Shkuratov模型的斑岩铜矿蚀变带混合波谱研究[J].地质与勘探,2013,49(3):505-510. Dai J J,Li Q T.Study on mixed spectra of alteration zones in porphyry copper deposits based on the Hapke and Shkuratov models[J].Geology and Exploration,2013,49(3):505-510.
[2] Foody G M,Cox D P.Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions[J].International Journal of Remote Sensing,1994,15(3):619-631.
[3] Clark R N,Swayze G A,Livo K E,et al.Imaging spectroscopy:Earth and planetary remote sensing with the USGS Tetracorder and expert systems[J].Journal of Geophysical Research,2003,108(E12):5131.
[4] Hapke B.Bidirectional reflectance spectroscopy:1.Theory[J].Journal of Geophysical Research,1981,86(B4):3039-3054.
[5] Hapke B,Wells E.Bidirectional reflectance spectroscopy:2.Experiments and observations[J].Journal of Geophysical Research,1981,86(B4):3055-3060.
[6] Chandrasekhar S.Radiative Transfer[M].New York:Dover Publications,1960.
[7] 徐元柳.基于裸露地表辐射传输模型的粗糙度反演与地形校正[D].北京:中国地质大学(北京),2009. Xu Y L.Roughness Retrieval and Topographic Correction Based on Bare Surface Radiative Transfer Model[D].Beijing:China University of Geosciences(Beijing),2009.
[8] Shepard M K,Helfenstein P.A test of the Hapke photometric model[J].Journal of Geophysical Research,2007,112(E3):E03001.
[9] Ciarniello M,Capaccioni F,Filacchione G,et al.Hapke modeling of Rhea surface properties through Cassini-VIMS spectra[J].Icarus,2011,214(2):541-555.
[10] Li S,Li L.Radiative transfer modeling for quantifying lunar surface minerals,particle size,and submicroscopic metallic Fe[J].Journal of Geophysical Research,2011,116(E9):E09001.
[11] Mustard J F,Pieters C M.Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra[J].Journal of Geophysical Research,1989,94(B10):13619-13634.
[12] Cheek L C,Pieters C M.Reflectance spectroscopy of plagioclase-dominated mineral mixtures:Implications for characterizing lunar anorthosites remotely[J].American Mineralogist,2014,99(10):1871-1892.
[13] Papike J J,Simon S B,Laul J C.The lunar regolith:Chemistry,mineralogy,and petrology[J].Reviews of Geophysics,1982,20(4):761-826.
[14] Hapke B.Bidirectional reflectance spectroscopy:5.The coherent backscatter opposition effect and anisotropic scattering[J].Icarus,2002,157(2):523-534.
[15] Hapke B.Theory of Reflectance and Emittance Spectroscopy[M].New York:Cambridge University Press,2005.
[16] 陈明.基于分形理论的岩矿光谱模型研究[D].武汉:华中科技大学,2010. Chen M.Study on the Spectral Model of Rocks and Minerals Based on Fractal[D].Wuhan:Huazhong University of Science and Technology,2010.
[17] 闫柏琨,李建忠,甘甫平,等.一种月壤主要矿物组分含量反演的光谱解混方法[J].光谱学与光谱分析,2012,32(12):3335-3340. Yan B K,Li J Z,Gan F P,et al.A spectral unmixing method of estimating main minerals abundance of lunar soils[J].Spectroscopy and Spectral Analysis,2012,32(12):3335-3340.
[18] 程街亮,史舟,李洪义.不同类型土壤的二向反射光谱特性及模拟[J].光谱学与光谱分析,2008,28(5):1007-1011. Cheng J L,Shi Z,Li H Y.Observation and simulation of bi-directional spectral reflectance on different type of soils[J].Spectroscopy and Spectral Analysis,2008,28(5):1007-1011.
[19] 田丰.全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D].北京:中国地质大学(北京),2010. Tian F.Identification and Quantitative Retrival of Minerals Information Integrating VIS-NIR-MIR-TIR(0.35~25μm) Hyspectral Data[D].Beijing:China University of Geosciences(Beijing),2010.
[20] Lemelin M,Morisset C E,Germain M,et al.Ilmenite mapping of the lunar regolith over mare australe and mare ingenii regions:An optimized multisource approach based on Hapke radiative transfer theory[J].Journal of Geophysical Research:Planets,2013,118(2):2582-2593.

[1] 刘慧, 齐增湘, 黄傅强. 洞庭湖区城镇化与鸟类生境时空分异及关联分析[J]. 国土资源遥感, 2020, 32(3): 191-199.
[2] 邓刚, 唐志光, 李朝奎, 陈浩, 彭焕华, 王晓茹. 基于MODIS时序数据的湖南省水稻种植面积提取及时空变化分析[J]. 国土资源遥感, 2020, 32(2): 177-185.
[3] 夏既胜, 马梦莹, 符钟壬. 基于GF-2遥感影像的机械性破损面提取方法[J]. 国土资源遥感, 2020, 32(2): 26-32.
[4] 马超, 杨飞, 王学成. 基于中尺度光谱和时序物候特征提取南方丘陵山区茶园[J]. 国土资源遥感, 2019, 31(1): 141-148.
[5] 国贤玉, 李坤, 王志勇, 李宏宇, 杨知. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018, 30(4): 20-27.
[6] 孙娜, 高志强, 王晓晶, 罗志东. 基于高分遥感影像的黄土高原地区水体高精度提取[J]. 国土资源遥感, 2017, 29(4): 173-178.
[7] 陶婷, 阮仁宗, 岁秀珍, 王玉强, 林鹏. 基于HyMap数据的浮水植被信息提取[J]. 国土资源遥感, 2017, 29(2): 187-192.
[8] 王瑾杰, 丁建丽, 张成, 陈文倩. 基于GF-1卫星影像的改进SWI水体提取方法[J]. 国土资源遥感, 2017, 29(1): 29-35.
[9] 孙宇翼, 赵军利, 王苗苗, 刘勇. 基于J48决策树的面向对象方法的土地覆被信息提取[J]. 国土资源遥感, 2016, 28(4): 156-163.
[10] 鹿丰玲, 巩在武. 基于随机森林算法构建云-云阴影-水体掩模[J]. 国土资源遥感, 2016, 28(3): 73-79.
[11] 张雪红. 基于决策树方法的Landsat8 OLI影像红树林信息自动提取[J]. 国土资源遥感, 2016, 28(2): 182-187.
[12] 杨宇晖, 颜梅春, 李致家, 余青, 陈贝贝. 南方丘陵地区复杂地表“同物异谱”分类处理模型[J]. 国土资源遥感, 2016, 28(2): 79-83.
[13] 胡卫国, 孟令奎, 张东映, 樊志伟, 成建国, 李晓晖. 资源一号02C星图像水体信息提取方法[J]. 国土资源遥感, 2014, 26(2): 43-47.
[14] 盖颖颖, 周斌, 孙元芳, 周燕. 基于HJ-CCD数据的海面溢油提取方法研究[J]. 国土资源遥感, 2014, 26(2): 99-104.
[15] 万剑华, 厉梅, 任广波, 马毅. 基于变化检测的滨海湿地图高效更新方法[J]. 国土资源遥感, 2013, 25(4): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发