Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (2): 196-203    DOI: 10.6046/gtzyyg.2019.02.27
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
InSAR技术地铁沿线建筑物形变监测
朱茂1, 沈体雁1(), 黄松2, 白书建3, 葛春青3, 胡琼3
1.北京大学政府管理学院,北京 100871
2.深圳市城市公共安全技术研究院有限公司,深圳 518048
3.北京东方至远科技股份有限公司,北京 100081
Research on applications of InSAR technology to the deformation monitoring of buildings along the subway
Mao ZHU1, Tiyan SHEN1(), Song HUANG2, Shujian BAI3, Chunqin GE3, Qiong HU3
1.School of Government, Peking University, Beijing 100871, China
2.Shenzhen Urban Public Safety and Technology Institute, Shenzhen 518048, China
3.Beijing Vastitude Technology Co., Ltd., Beijing 100081, China
全文: PDF(7323 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

作为一种缓变的地质灾害,地面沉降会对建筑物的安全状况产生严重影响。尤其是地铁施工给周边目标引入的沉降风险,已经成为政府管理部门和社会热点关注问题之一。星载合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术能全天时、全天候、大范围获取地表高精度形变信息,为受地面沉降影响后城市建筑物的风险评估提供技术支持。以深圳市某地铁站周边建筑群为研究对象,利用PSP-InSAR技术,获取了深圳市2013年9月—2016年9月的形变数据。在数据分析的过程中,首先结合地铁站施工方案、地质资料和建筑物自身属性,对不同时间段建筑物的形变趋势变化及其对建筑物的影响开展了相应研究; 然后,选取研究区域内某栋建筑物为研究对象,分析了不同部位PS点的差异形变和倾斜量,并结合相应标准,初步评估了该栋建筑物受沉降灾害影响的风险; 最后,通过与水准数据对比,验证了InSAR形变测量结果的精度。实地调研也在形变量较大的建筑物上发现了相应危险征兆。实际案例分析证实了InSAR技术有能力在未来城市建筑物风险评估及综合治理的过程中起到重要作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱茂
沈体雁
黄松
白书建
葛春青
胡琼
关键词 地面沉降监测建筑物形变分析InSAR技术地铁施工监测    
Abstract

As a slow onset geological hazard, ground subsidence could damage buildings. In particular, the settlement risk induced by subway construction on building structures has become a matter of concern to governmental authorities and the public. Spaceborne interferometric synthetic aperture Radar (InSAR) technology could acquire high-precision surface deformation information and provide technical support to evaluate the risk level of urban buildings caused by ground subsidence hazards. Based on the deformation data acquired from September 2013 to September 2016 by PSP-InSAR algorithm, the authors selected the buildings near a subway station in Shenzhen as the study object. In data analysis process, first of all, combined with the construction scheme of subway station, geological information and the property of the building, the authors carried out the corresponding research on the change of the deformation trend in different periods and the risk assessment of the settlement disaster. Then, one building in the study area was selected as the research object, and the differential deformation and inclination were analyzed based on the deformation of PS at different locations. Combined with the corresponding standards, the risk of building subsidence disaster was preliminarily evaluated. Finally, by comparing with the leveling data, the precision of the InSAR measurement results was discussed. In accordance with the field investigation, it is verified that the corresponding risk symptoms have been found on the buildings whose deformation values were identified as relatively high in the analysis process. The comparison between data analysis and field investigation results confirms that InSAR technology is capable of playing an important role in urban building risk management process in the future and the methodology can be widely applied beyond the case study area.

Key wordsground subsidence monitoring    building deformation analysis    InSAR    subway construction monitoring
收稿日期: 2018-02-07      出版日期: 2019-05-23
:  TP79  
基金资助:国家自然科学基金项目“基于双边匹配理论的企业区位配置模型与区位市场设计”资助(71473008)
通讯作者: 沈体雁
作者简介: 朱 茂(1988-),男,博士,主要从事InSAR技术应用方面的研究。Email: zhumaowork@126.com。
引用本文:   
朱茂, 沈体雁, 黄松, 白书建, 葛春青, 胡琼. InSAR技术地铁沿线建筑物形变监测[J]. 国土资源遥感, 2019, 31(2): 196-203.
Mao ZHU, Tiyan SHEN, Song HUANG, Shujian BAI, Chunqin GE, Qiong HU. Research on applications of InSAR technology to the deformation monitoring of buildings along the subway. Remote Sensing for Land & Resources, 2019, 31(2): 196-203.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.02.27      或      https://www.gtzyyg.com/CN/Y2019/V31/I2/196
Fig.1  InSAR形变测量技术的几何模型
参数 参数值
拍摄模式 条带模式
空间分辨率/ m 3
升\降轨模式 降轨
极化方式 HH
中心下视角/(°) 32.23
影像数量/景 51
监测起始时间 20130914
监测终止时间 20160825
InSAR处理算法 Enhanced PSP
Tab.1  研究区InSAR数据基本参数
Fig.2  深圳地铁9号线试点地铁站周边WorldView卫星图像
(拍摄时间2015年4月14日)
任务名称 工期/d 开始时间 结束时间
一期顶板施工 30 20140328 20140426
二期顶板施工 30 20140901 20140930
中板施工 60 20140818 20141016
底板施工 60 20141101 20141230
负二层侧墙施工 45 20141231 20150213
负一层侧墙施工 30 20150214 20150315
Tab.2  试点地铁站施工方案
Fig.3  试点地铁站施工期间光学图像
Fig.4  试点地铁站周边的地层分布
Fig.5  试点地铁站周边2013年9月—2016年9月期间年平均形变速率
Fig.6  A和B点的形变演化历史
Fig.7  PS在2个时期内的形变速率
Fig.8  目标建筑物PS点的形变速率
Fig.9  C点和D点的差异沉降序列和倾斜演化序列
Fig.10  InSAR数据与水准数据对比
Fig.11  实地调研照片
[1] 高飞 . 城市地铁隧道施工引起的地面沉降[J].城市建筑, 2016(18):338.
Gao F . Ground surface settlement due to urban tunnel construction[J].Urbanism and Architecture, 2016(18):338.
[2] Bamler R, Hartl P . Synthetic aperture Radar interferometry[J]. Inverse Problems, 1998,14(4):1-54.
doi: 10.1088/0266-5611/14/1/002
[3] 廖明生, 王腾 . 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014.
Liao M S, Wang T. Time Series InSAR Technology and Its Application[M]. Beijing: Science Press, 2014.
[4] 朱建军, 李志伟, 胡俊 . InSAR变形监测方法与研究进展[J]. 测绘学报, 2017,46(10):1717-1733.
Zhu J J, Li Z W, Hu J . Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10):1717-1733.
[5] 葛大庆, 殷跃平, 王艳 , 等. 地面沉降-回弹及地下水位波动的InSAR长时序监测——以德州市为例[J]. 国土资源遥感, 2014,26(1):103-109.doi: 10.6046/gtzyyg.2014.01.18.
doi: 10.6046/gtzyyg.2014.01.18
Ge D Q, Yin Y P, Wang Y , et al. Seasonal subsidence-rebound and ground water level changes monitoring by using coherent target InSAR technique:A case study of Dezhou,Shandong[J]. Remote Sensing for Land and Resources, 2014,26(1):103-109.doi: 10.6046/gtzyyg.2014.01.18.
[6] 刘一霖, 张勤, 黄海军 , 等. 矿区地表大量级沉陷形变短基线集InSAR监测分析[J]. 国土资源遥感, 2017,29(2):144-151.doi: 10.6046/gtzyyg.2017.02.21.
Liu Y L, Zhang Q, Huang H J , et al. Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR[J]. Remote Sensing for Land and Resources, 2017,29(2):144-151.doi: 10.6046/gtzyyg.2017.02.21.
[7] 赵亿, 钱乐, 杨魁 . 探讨InSAR技术在城市建筑物沉降监测中的精度[J].城市勘测, 2015(3):115-119.
Zhao Y, Qian L, Yang K . The discussion of InSAR accuracy in the urban building subsidence monitoring[J].Urban Geotechnical Investigation and Surveying, 2015(3):115-119.
[8] Gernhardt S, Bamler R . Deformation monitoring of single buildings using meter-resolution SAR data in PSI[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,73(9):68-79.
doi: 10.1016/j.isprsjprs.2012.06.009
[9] Bianchini S, Pratesi F, Nolesini T , et al. Building deformation assessment by means of persistent scatterer interferometry analysis on a landslide-affected area:The Volterra (Italy) case study[J]. Remote Sensing, 2015,7(4):4678-4701.
doi: 10.3390/rs70404678
[10] Tapete D, Fanti R, Cecchi R , et al. Satellite Radar interferometry for monitoring and early-stage warning of structural instability in archaeological sites[J]. Journal of Geophysics and Engineering, 2012,9(4):10-25.
doi: 10.1088/1742-2132/9/4/S10
[11] 陈蓓蓓, 宫辉力, 李小娟 , 等. 基于InSAR技术北京地区地面沉降监测与风险分析[J]. 地理与地理信息科学, 2011,27(2):16-20.
Chen P P, Gong H L, Li X J , et al. Monitoring and risk analysis of land subsidence in Beijing based on interferometric synthetic aperture Radar(InSAR) technique[J]. Geography and Geo-Information Science, 2011,27(2):16-20.
[12] 秦晓琼, 廖明生, 杨梦诗 , 等. 应用高分辨率PS-InSAR技术监测上海动迁房歪斜形变[J].测绘通报, 2016(6):18-21.
Qing X Q, Liao M S, Yang M S , et al. Monitoring Shanghai relocation housing skew deformation using high resolution PS-InSAR technolo-gy[J].Bulletin of Surveying and Mapping, 2016(6):18-21.
[13] Costantini M, Falco S, Malvarosa F, et al. A new method for identification and analysis of persistent scatterers in series of SAR images [C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Boston:IEEE, 2008: 449-452.
[14] Costantini M, Falco S, Malvarosa F , et al. Persistent scatterer pair interferometry:Approach and application to COSMO-SkyMed SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(7):2869-2879.
doi: 10.1109/JSTARS.2014.2343915
[15] Ferretti A, Prati C, Rocca F . Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2202-2212.
doi: 10.1109/36.868878
[16] Ferretti A, Prati C, Rocca F . Permanent scatterers in SAR interfero-metry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.
doi: 10.1109/36.898661
[17] Covello F.Battazza F.Coletta A , et al. COSMO-SkyMed an existing opportunity for observing the Earth[J]. Journal of Geodynamics, 2010,49(3-4):171-180.
doi: 10.1016/j.jog.2010.01.001
[1] 李梦梦, 范雪婷, 陈超, 李倩楠, 杨锦. 徐州矿区2016—2018年地面沉降监测与分析[J]. 自然资源遥感, 2021, 33(4): 43-54.
[2] 李曼, 葛大庆, 张玲, 刘斌, 郭小方, 王艳. 基于PSInSAR技术的曹妃甸新区地面沉降发育特征及其影响因素分析[J]. 国土资源遥感, 2016, 28(4): 119-126.
[3] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发