Please wait a minute...
 
自然资源遥感  2021, Vol. 33 Issue (4): 43-54    DOI: 10.6046/zrzyyg.2020137
  地面沉降监测专栏 本期目录 | 过刊浏览 | 高级检索 |
徐州矿区2016—2018年地面沉降监测与分析
李梦梦(), 范雪婷, 陈超, 李倩楠, 杨锦
江苏省基础地理信息中心,南京 210013
Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018
LI Mengmeng(), FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin
Provincial Geomatics Centre of Jiangsu, Nanjing 210013, China
全文: PDF(20145 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

时间序列合成孔径雷达干涉测量(interferometric synthetic aperture Radar,InSAR)技术因可以安全、高效地获取大范围、高精度地面沉降数据而被广泛应用。如何通过该技术准确、高效获取不同开采状态矿区的地面沉降数据,为矿区生态环境治理提供数据支撑依然是当前热点。文章基于58景Sentinel-1A影像数据,采用多主影像相干目标小基线InSAR方法(multiple master-image coherent target small-baseline interferometric SAR,MCTSB-InSAR),对徐州市6个矿区进行时序监测,得到矿区2016—2018年间地面沉降监测结果。用相近时段内的实测水准数据对年均沉降速率进行精度验证,二者差值的均方根误差为4.0 mm/a,满足监测要求。监测结果表明: 张双楼煤矿和三河尖煤矿沉降较为严重,最大年均沉降速率均超过100 mm/a,最大累计沉降量均超过300 mm; 旗山煤矿、拾屯煤矿、权台煤矿和张集煤矿沉降较轻,监测时段内沉降均发生在矿区范围内,无明显扩张趋势。结合江苏省2016年地理国情监测数据分析,三河尖煤矿有2 844个高相干点落入房屋及道路内,占该矿区总高相干点数的73.66%,张双楼煤矿有672个高相干点落入房屋及道路内,占该矿区总高相干点数的63.33%; 除权台煤矿外,其余矿区的时序沉降量与时间基本都呈线性关系,且在采矿区的沉降一般比停采矿区的线性规律更强,权台煤矿的时序沉降量符合非线性沉降规律。实验表明,Sentinel-1A影像数据和MCTSB-InSAR技术在矿区地面沉降监测与分析方面具有良好的应用前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李梦梦
范雪婷
陈超
李倩楠
杨锦
关键词 矿区沉降监测时序分析InSAR技术    
Abstract

The time-series interferometric synthetic aperture Radar (InSAR) technology has been widely used since it allows for the safe and efficient obtainment of large-scale high-precision ground subsidence data. It is still a hot topic to efficiently obtain accurate land subsidence data of mining areas at different mining states using this technology to provide data support for the ecological governance of the mining areas. Based on Sentinel-1A images (58 scenes per complete orbit), this paper conducts time series monitoring of six mining areas in Xuzhou City using the multiple master-image coherent target small-baseline interferometric SAR (MCTSB-InSAR) technique and obtains land subsidence results during 2016—2018. Meanwhile, it verifies the accuracy of the obtained subsidence rate using the measured data in a similar period, yielding a difference in root mean square error of 4.0 mm/a. Therefore, the monitoring requirements can be satisfied. The monitoring results are as follows. The Zhangshuanglou and Sanhejian coal mines suffered serious land subsidence, with the maximum average annual subsidence rate exceeding 100 mm/a and the maximum cumulative subsidence exceeding 300 mm. In comparison, the Qishan, Shitun, Quantai, and Zhangji coal mines experienced light subsidence, which all occurred within the mining areas and did not show a notable expansion trend during the monitoring period. Based on these results and the monitoring data of the basic geographical state of Jiangsu Province in 2016, there were 2 844 and 672 high-coherence points falling in houses and roads, respectively for the Sanhejian and Zhangshuanglou coal mines, which accounted for 73.66% and 63.33% of the total high coherence points of the mines, respectively. For the mining areas except for the Quantai coal mine, there was a roughly linear relationship between the subsidence amount and time, which was stronger in the mines under mining than in the mines where mining had stopped. In contrast, the relationship between the subsidence amount in the Quantai coal mine and time presented a nonlinear law. The experiment results show that Sentinel-1A images and the MCTSB-InSAR technique have good application prospects in the monitoring and analysis of land subsidence in mining areas.

Key wordsmining area    subsidence monitoring    time-series analysis    InSAR technique
收稿日期: 2020-05-09      出版日期: 2021-12-23
ZTFLH:  P237P258  
基金资助:江苏省测绘地理信息科研项目“江苏省InSAR地表沉降监测成果专题应用研究”(JSCHKY201803)
作者简介: 李梦梦(1993-),女,硕士研究生,主要研究方向为InSAR数据处理与应用。Email: dream_0705@sina.com
引用本文:   
李梦梦, 范雪婷, 陈超, 李倩楠, 杨锦. 徐州矿区2016—2018年地面沉降监测与分析[J]. 自然资源遥感, 2021, 33(4): 43-54.
LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2020137      或      https://www.gtzyyg.com/CN/Y2021/V33/I4/43
煤矿名称 投产时间 停采时间 生产能力/(万t·a-1)
权台煤矿 1959年12月 2015年12月 110
旗山煤矿 1959年 2016年1月 150
张集煤矿 1979年6月 2016年5月 85
拾屯煤矿 1992年1月 2016年12月 15
三河尖煤矿 1988年8月 2019年 120
张双楼煤矿 1986年 120
Tab.1  矿区基本信息
Fig.1  影像、水准点和矿区分布
Fig.2  技术路线图
Fig.3  小基线对基线时空分布
Fig.4  水准点与InSAR点沉降速率差值及不同差值范围内点数统计
Fig.5  矿区最大沉降速率及最大累计沉降量
Fig.6-1  矿区地面沉降速率和累计地面沉降量空间分布
Fig.6-2  矿区地面沉降速率和累计地面沉降量空间分布
Fig.6-3  矿区地面沉降速率和累计地面沉降量空间分布
Fig.7  矿区内不同沉降速率范围高相干点个数统计
Fig.8  矿区土地利用分类及高相干点分布
Fig.9-1  矿区累计沉降量时序变化
Fig.9-2  矿区累计沉降量时序变化
Fig.10  矿区累计沉降量变化统计
[1] Howladar M F. Environmental impacts of subsidence around the Barapukuria coal mining area in Bangladesh[J]. Energy,Ecology and Environment, 2016,1(6):370-385.
doi: 10.1007/s40974-016-0031-x
[2] Sahu P, Lokhande R D. An investigation of sinkhole subsidence and its preventive measures in underground coal mining[J]. Procedia Earth and Planetary Science, 2015,11:63-75.
doi: 10.1016/j.proeps.2015.06.009
[3] Saeidi A, Deck O, Verdel T. Comparison of building damage assessment methods for risk analysis in mining subsidence regions[J]. Geotechnical and Geological Engineering, 2013,31(4):1073-1088.
doi: 10.1007/s10706-013-9633-7
[4] 岳建平, 方露. 城市地面沉降监控理论与技术[M]. 北京: 科学出版社, 2012:1-5.
Yue J P, Fang L. Theory and technology of urban land subsidence monitoring[M]. Beijing: Science Press, 2012:1-5.
[5] Liu X, Wang Y, Yan S. Interferometric SAR time series analysis for ground subsidence of the abandoned mining area in north Peixian using Sentinel-1A TOPS data[J]. Journal of the Indian Society of Remote Sensing, 2018,46(3):451-461.
doi: 10.1007/s12524-017-0708-4
[6] 何敏, 陆晓燕, 何秀凤. 利用D-InSAR二轨法监测徐州大屯中心区地表形变[J]. 地理空间信息, 2011,9(5):3-5.
He M, Lu X Y, He X F. Surface deformation in the central area of Xuzhou Datun was monitored by D-InSAR[J]. Geospatial Information, 2011,9(5):3-5.
[7] 郭炳跃, 何敏, 刘建东. 利用InSAR技术监测徐州市矿区地表变形[J]. 地质学刊, 2012,36(1):99-103.
Guo B Y, He M, Liu J D. Surface deformation monitoring with InSAR technology in Xuzhou[J]. Journal of Geology, 2012,36(1):99-103.
[8] 武继峰, 杨志强. InSAR技术应用于矿区开采沉陷监测的数据优选研究[J]. 测绘通报, 2013(s1):92-94.
Wu J F, Yang Z Q. The study of the data optimization of mining subsidence monitoring based on InSAR technique[J]. Bulletin of Surveying and Mapping, 2013(s1):92-94.
[9] Yang C, Zhang D, Zhao C, et al. Ground deformation revealed by Sentinel-1 MSBAS-InSAR time-series over Karamay oilfield,China[J]. Remote Sensing, 2019,11(17):2027.
doi: 10.3390/rs11172027
[10] Chaussard E, Wdowinski S, Cabral-Cano E, et al. Land subsidence in central Mexico detected by ALOS InSAR time-series[J]. Remote Sensing of Environment, 2014,140:94-106.
doi: 10.1016/j.rse.2013.08.038
[11] 李达, 邓喀中, 高晓雄, 等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报(信息科学版), 2018,43(10):1531-1537.
Li D, Deng K Z, Gao X X, et al. Monitoring and analysis of surface subsidence in mining area based on SBAS-InSAR[J]. Geomatics and Information Science of Wuhan University, 2018,43(10):1531-1537.
[12] Chatterjee R S, Thapa S, Singh K B, et al. Detecting,mapping and monitoring of land subsidence in Jharia Coalfield,Jharkhand,India by spaceborne differential interferometric SAR,GPS and precision levelling techniques[J]. Journal of Earth System Science, 2015,124(6):1359-1376.
doi: 10.1007/s12040-015-0606-5
[13] Grzovic M, Ghulam A. Evaluation of land subsidence from underground coal mining using time SAR (SBAS and PSI) in Springfield,Illinois,USA[J]. Natural Hazards, 2015,79(3):1739-1751.
doi: 10.1007/s11069-015-1927-z
[14] Bateson L, Cigna F, Boon D, et al. The application of the intermittent SBAS (ISBAS) InSAR method to the South Wales Coalfield,UK[J]. International Journal of Applied Earth Observation and Geoinformation, 2015,34:249-257.
doi: 10.1016/j.jag.2014.08.018
[15] Gupta M, Mohanty K K, Kumar D, et al. Monitoring surface elevation changes in Jharia coalfield, India using synthetic aperture Radar interferometry[J]. Environmental Earth Sciences, 2014,71(6):2875-2883.
doi: 10.1007/s12665-013-2664-9
[16] 陆燕燕, 何敏, 何秀凤. 基于DInSAR的徐州张双楼煤矿地表形变监测研究[J]. 测绘工程, 2013,22(6):61-64.
Lu Y Y, He M, He X F. Ground subsidence monitoring of Zhangshuanglou coal mine in Xuzhou City based on DInSAR[J]. Engineering of Surveying and Mapping, 2013,22(6):61-64.
[17] Nannini M, Prats-Iraola P, Zan F D, et al. TOPS time series performance assessment with TerraSAR-X data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016,9(8):3832-3848.
doi: 10.1109/JSTARS.4609443
[18] 吴文豪, 李陶, 龙四春, 等. 实时轨道条件下Sentinel-1卫星影像干涉配准[J]. 武汉大学学报(信息科学版), 2019,44(5):745-750.
Wu W H, Li T, Long S C, et al. Coregistration of sentinel-1 TOPS data for interferometric processing using real-time orbit[J]. Geomatics and Information Science of Wuhan University, 2019,44(5):745-750.
[19] De Zan F, Prats-Iraola P, Scheiber R. Interferometry with TOPS:Coregistration and azimuth shifts[C]//Berlin:VDE Verlag GmbH, 2014:949-952.
[20] 康琪. TOPS模式数据InSAR形变监测配准方法[D]. 北京:中国测绘科学研究院, 2019.
Kang Q. Registration method of TOPS data for InSAR deformation monitoring[D]. Beijing:Chinese Academy of Surveying and Mapping, 2019.
[21] Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interfero-metry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(1):8-20.
doi: 10.1109/36.898661
[22] Mora O, Mallorqui J J, Broquetas A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(10):2243-2253.
doi: 10.1109/TGRS.2003.814657
[23] 张永红, 吴宏安, 孙广通. 时间序列InSAR技术中的形变模型研究[J]. 测绘学报, 2012,41(6):864-869.
Zhang Y H, Wu H A, Sun G T. Deformation model of time series interferometric SAR techniques[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(6):864-869.
[24] 张永红, 吴宏安, 康永辉. 京津冀地区1992—2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016,45(9):1050-1058.
Zhang Y H, Wu H A, Kang Y H. Ground Subsidence over Beijing-Tianjin-Hebei region during three periods of 1992 to 2014 monitored by interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(9):1050-1058.
[25] 国家测绘地理信息局. CH/T 6006—2018时间序列InSAR地表形变监测数据处理规范[S]. 北京: 测绘出版社, 2018.
National Bureau of Surveying,Mapping and Geographic Information. CH/T 6006—2018 specification of time series InSAR data processing for ground deformation monitoring[S]. Beijing: Surveying and Mapping Press, 2018.
[1] 张仙, 李伟, 陈理, 杨昭颖, 窦宝成, 李瑜, 陈昊旻. 露天开采矿区要素遥感提取研究进展及展望[J]. 自然资源遥感, 2023, 35(2): 25-33.
[2] 虎小强, 杨树文, 闫恒, 薛庆, 张乃心. 基于时序InSAR的新疆阿希矿区地表形变监测与分析[J]. 自然资源遥感, 2023, 35(1): 171-179.
[3] 董继红, 马志刚, 梁京涛, 刘彬, 赵聪, 曾帅, 鄢圣武, 马晓波. 基于时序InSAR技术的滑坡隐患识别对比研究[J]. 自然资源遥感, 2022, 34(3): 73-81.
[4] 杨旺, 何毅, 张立峰, 王文辉, 陈有东, 陈毅. 甘肃金川矿区地表三维形变InSAR监测[J]. 自然资源遥感, 2022, 34(1): 177-188.
[5] 于冰, 谭青雪, 刘国祥, 刘福臻, 周志伟, 何智勇. 高分辨率TerraSAR-X时序差分干涉沉降监测及精度验证[J]. 自然资源遥感, 2021, 33(4): 26-33.
[6] 蔡祥, 李琦, 罗言, 齐建东. 面向对象结合深度学习方法的矿区地物提取[J]. 国土资源遥感, 2021, 33(1): 63-71.
[7] 王玲玉, 陈全, 吴跃, 周忠发, 但雨生. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3): 23-31.
[8] 宋国策, 张志. 内蒙古新巴尔虎右旗多金属矿区扬尘风积物遥感监测方法[J]. 国土资源遥感, 2020, 32(2): 46-53.
[9] 朱茂, 沈体雁, 黄松, 白书建, 葛春青, 胡琼. InSAR技术地铁沿线建筑物形变监测[J]. 国土资源遥感, 2019, 31(2): 196-203.
[10] 白泽朝, 汪宝存, 靳国旺, 徐青, 张红敏, 刘辉. Sentinel-1A数据矿区地表形变监测适用性分析[J]. 国土资源遥感, 2019, 31(2): 210-217.
[11] 张晓博, 赵学胜, 葛大庆, 刘斌, 张玲, 李曼, 王艳. 基于Sentinel TOPS模式Stacking技术监测淮南矿区沉降[J]. 国土资源遥感, 2018, 30(4): 200-205.
[12] 赵菲菲, 包妮沙, 吴立新, 孙瑞. 国产HJ-1B卫星数据的地表温度及湿度反演方法——以呼伦贝尔草原伊敏露天煤矿区为例[J]. 国土资源遥感, 2017, 29(3): 1-9.
[13] 刘英, 侯恩科, 岳辉. 基于MODIS的神东矿区植被动态监测与趋势分析[J]. 国土资源遥感, 2017, 29(2): 132-137.
[14] 李曼, 葛大庆, 张玲, 刘斌, 郭小方, 王艳. 基于PSInSAR技术的曹妃甸新区地面沉降发育特征及其影响因素分析[J]. 国土资源遥感, 2016, 28(4): 119-126.
[15] 孙晓鹏, 鲁小丫, 文学虎, 甄艳, 王蕾. 基于SBAS-InSAR的成都平原地面沉降监测[J]. 国土资源遥感, 2016, 28(3): 123-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发