Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (3): 129-135    DOI: 10.6046/gtzyyg.2020.03.17
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
金沙滩近岸水体叶绿素a和悬浮物遥感反演研究
盖颖颖(), 王章军(), 杨雷, 周燕, 龚金龙
齐鲁工业大学(山东省科学院),山东省科学院海洋仪器仪表研究所,山东省海洋监测仪器装备技术重点实验室,国家海洋监测设备工程技术研究中心,青岛 266061
Remote sensing retrieval of chlorophyll-a and suspended matter in coastal waters of Golden Beach
GAI Yingying(), WANG Zhangjun(), YANG Lei, ZHOU Yan, GONG Jinlong
Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao 266061, China
全文: PDF(4041 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

针对现有的水质要素反演模型应用于金沙滩近岸水体的水质要素反演精度低的问题,根据机载海洋高光谱仪光谱数据,借鉴已有黄海、东海二类水体水质要素的统计反演模式,建立了基于机载高光谱仪的金沙滩近岸水体叶绿素a和总悬浮物的反演模型,获得了研究区叶绿素a和总悬浮物浓度空间分布,并分析了机载海洋高光谱仪增益对模型反演精度的影响。模型改进后,光谱仪测量数据反演结果与水体取样实测结果的拟合决定系数和平均相对误差分别为: 叶绿素a 0.65,4.41%,总悬浮物 0.80,3.55%。通过对高光谱仪在同一海域相近时间段,但不同增益下获得的光谱数据进行叶绿素a和总悬浮物的反演对比,证明增益变化后,改进模型的反演平均相对误差和均方根误差均有所增加,反演精度降低,但误差仍在可接受范围内,模型稳定性整体良好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盖颖颖
王章军
杨雷
周燕
龚金龙
关键词 机载高光谱仪金沙滩近岸水体叶绿素a总悬浮物增益    
Abstract

In view of the low precision of existing water quality element retrieval models applied to the coastal waters of Golden Beach, the authors, based on the statistical retrieval models of water color for case Ⅱ water body in Yellow Sea and East China Sea by Tang Junwu, established the retrieval models of chlorophyll-a and total suspended matter concentration for coastal waters of Golden Beach by using the spectral data obtained from airborne marine hyper-spectrometer. The spatial distribution of chlorophyll-a and total suspended matter concentration in the study area was obtained and the influence of hyper-spectrometer gain on model retrieval accuracy was analyzed. After the models were improved, the determination coefficients and average relative errors between the retrieval results from spectrometer measurements and the sampling measurements were respectively chlorophyll-a 0.65, 4.41%, and total suspended matter 0.80, 3.55%. Retrieval results from the same spectrometer at the same coordinates and approximate time but under different gains were compared. It is proved that retrieval average relative errors and root mean square errors of improved models are all increased and the retrieval accuracy is reduced if gain changes. However, the error is in the allowable range and the model stability is good overall.

Key wordsairborne hyper-spectrometer    Golden Beach    coastal water    chlorophyll-a    total suspended matter    gain
收稿日期: 2019-08-23      出版日期: 2020-10-09
:  TP79  
基金资助:国家重点研发计划项目“极区大气钠荧光多普勒激光雷达探测系统研发”(2016YFC1400301);海洋公益性行业科研专项项目“海洋高光谱仪和机载激光测量系统产品化关键技术研究及应用示范”(201505031);国家重点研发计划项目“面向气候变化的极区大气与空间环境业务化监测与研究”(2018YFC1407300);国家自然科学基金项目“GFRP层板缺陷线性调频红外热波成像检测概率和特征图像融合算法研究”(61701287);山东省重点研发计划项目“基于无人机的微型大气气溶胶垂直廓线探测仪关键技术研究”(2019GGX104004)
通讯作者: 王章军
作者简介: 盖颖颖(1987-),女,硕士,工程师,主要从事遥感图像处理和计算机视觉研究。Email: gyygyy1234@163.com
引用本文:   
盖颖颖, 王章军, 杨雷, 周燕, 龚金龙. 金沙滩近岸水体叶绿素a和悬浮物遥感反演研究[J]. 国土资源遥感, 2020, 32(3): 129-135.
GAI Yingying, WANG Zhangjun, YANG Lei, ZHOU Yan, GONG Jinlong. Remote sensing retrieval of chlorophyll-a and suspended matter in coastal waters of Golden Beach. Remote Sensing for Land & Resources, 2020, 32(3): 129-135.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.03.17      或      https://www.gtzyyg.com/CN/Y2020/V32/I3/129
Fig.1  研究区位置(红色三角形处为研究区)
Fig.2  经预处理的海表高光谱真彩色合成影像
Fig.3  海水样品采集站位图
Fig.4  海水样品采集点的水体光谱曲线
Fig.5  归一化光谱与Chl-a和TSM相关关系
Fig.6  Chl-a模型估测值与实测值对比
模型 均方根误差/
(mg·m-3)
平均相对
误差/%
决定系数
NSOAS模型 0.09 8.07 0.11
改进模型 0.06 4.41 0.65
Tab.1  Chl-a反演模型改进前后精度对比
Fig.7  TSM模型估测值与实测值对比
模型 均方根误差/
(mg·L-1)
平均相对
误差/%
决定系数
Tassan模型 0.73 5.85 0.48
NSOAS模型 0.73 5.86 0.47
改进模型(555 nm) 0.52 4.41 0.74
改进模型(564 nm) 0.45 3.55 0.80
Tab.2  TSM反演模型改进前后精度对比
Fig.8  研究区Chl-a和TSM浓度空间分布
Fig.9  不同增益下海水光谱曲线对比
水质要素 拟合点增益 验证点增益 平均相对
误差/%
均方根误差
Chl-a 0 0 8.99 0.09 mg/m3
0 2 15.90 0.20 mg/m3
TSM 0 0 8.02 0.86 mg/L
0 2 9.41 1.25 mg/L
Tab.3  不同增益下模型估算误差表
[1] Kim H C, Son S, Kim Y H, et al. Remote sensing and water quality indicators in the Korean west coast:Spatio-temporal structures of MODIS-derived chlorophyll-a and total suspended solids[J]. Marine Pollution Bulletin, 2017,121(1-2):425-434.
pmid: 28641885
[2] 姜丽君. 基于遥感反演的近20 a莱州湾表层悬浮泥沙和叶绿素a时空变化研究[D]. 烟台:鲁东大学, 2018.
Jiang L J. Temporal and spatial variations of suspended sediment and chlorophyll-a in Laizhou Bay in recent 20 years based on remote sensing inversion[D]. Yantai:Ludong University, 2018.
[3] Jong C P, Mayzonee L, Yong S K, et al. High-spatial resolution monitoring of phycocyanin and chlorophyll-a Using Airborne Hyperspectral imagery[J]. Remote Sensing, 2018,10(8):1-31.
doi: 10.3390/rs10010001
[4] Purandara B K, Jamadar B S, Chandramohan T, et al. Water quality assessment of a lentic water body using remote sensing:A case study [C]//Singh V P. Environmental Pollution.Singapore:Springer, 2018: 371-380.
[5] 张明慧, 苏华, 季博文. MODIS时序影像的福建近岸叶绿素a浓度反演[J]. 环境科学学报, 2018,38(12):4831-4839.
Zhang M H, Su H, Ji B W. Retrieving nearshore chlorophyll-a concentration using MODIS time-series images in the Fujian Province[J]. Acta Scientiae Circumstantiae, 2018,38(12):4831-4839.
[6] 孙小涵, 胡连波, 冯永亮, 等. 基于HJ-1卫星数据的荣成湾叶绿素a浓度时空变化特征分析[J].海洋湖沼通报, 2018(5):72-79.
Sun X H, Hu L B, Feng Y L, et al. Temperal and spatial analysis of chlorophyll a concentration patterns in Rongcheng Bay using HJ-1 satellite data[J].Transactions of Oceanology and Limnology 2018(5):72-79.
[7] Cao Y, Ye Y T, Zhao H L, et al. Remote sensing of water quality based on HJ-1A HSI imagery with modified discrete binary particle swarm optimization-partial least squares (MDBPSOPLS) in inland waters:A case in Weishan Lake[J]. Ecological Informatics, 2018,44:21-32.
doi: 10.1016/j.ecoinf.2018.01.004
[8] 潘邦龙, 申慧彦, 邵慧, 等. 湖泊叶绿素高光谱空谱联合遥感反演[J]. 大气与环境光学学报, 2017,12(6):428-434.
Pan B L, Shen H Y, Shao H, et al. Combined inversion of Hyper-spectral remote sensing of space and spectrum for lake chlorophyll[J]. Journal of Atmospheric and Environmental Optics, 2017,12(6):428-434.
[9] Mohammad H G, Assefa M M, Lakshmi R. Spaceborne and airborne sensors in water quality assessment[J]. International Journal of Remote Sensing, 2016,37(14):3143-3180.
doi: 10.1080/01431161.2016.1190477
[10] 林剑远, 张长兴. 航空高光谱遥感反演城市河网水质参数[J]. 遥感信息, 2019,34(2):23-29.
Lin J Y, Zhang C X. Inversion of water quality parameters of urban river network using airborne hyperspectral remote sensing[J]. Remote Sensing Information, 2019,34(2):23-29.
[11] 唐军武, 王晓梅, 宋庆君, 等. 黄、东海二类水体水色要素的统计反演模式[J]. 海洋科学进展, 2004,22:1-7.
Tang J W, Wang X M, Song Q J, et al. Statistical inversion models for case Ⅱ water color elements in the Yellow Sea and East China Sea[J]. Advances in Marine Science, 2004,22:1-7.
[12] Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton,pigments,suspended sediment,and yellow substance in coastal waters[J]. Applied Optics, 1994,33(12):2369-2378.
doi: 10.1364/AO.33.002369 pmid: 20885588
[13] 杨俊生, 葛毓柱, 吴琼, 等. 黄岛金沙滩现代波痕沉积特征与水动力关系[J]. 科技导报, 2014,32(1):22-29.
doi: 10.3981/j.issn.1000-7857.2014.002
Yang J S, Ge Y Z, Wu Q, et al. Characteristics of ripples both in morphology and sediments in Golden Beach Coastal Zone,Huangdao and the relationship with hydrodynamics[J]. Science and Technology Review, 2014,32(1):22-29.
[14] 毕顺, 李云梅, 吕恒, 等. 基于OLCI数据的洱海叶绿素a浓度估算[J]. 湖泊科学, 2018,30(3):701-712.
Bi S, Li Y M, Lyu H, et al. Estimation of chlorophyll-a concentration in Lake Erhai based on OLCI data[J]. Journal of Lake Sciences, 2018,30(3):701-712.
doi: 10.18307/2018.0312
[15] 黄启会, 贺中华, 梁虹, 等. 基于高光谱数据的百花湖叶绿素a浓度估算[J]. 环境科学与技术, 2019,42(1):134-141.
Huang Q H, He Z H, Liang H, et al. Estimation of chlorophyll-a concentration in Baihua Lake water based on hyspectral data[J]. Environmental Science and Technology, 2019,42(1):134-141.
[1] 封红娥, 李家国, 朱云芳, 韩启金, 张宁, 田淑芳. GF-1与Landsat8水体叶绿素a浓度协同反演——以太湖为例[J]. 国土资源遥感, 2019, 31(4): 182-189.
[2] 刘文雅, 邓孺孺, 梁业恒, 吴仪, 刘永明. 基于辐射传输模型的巢湖叶绿素a浓度反演[J]. 国土资源遥感, 2019, 31(2): 102-110.
[3] 高晨, 徐健, 高丹, 王莉莉, 王野乔. 基于GF-1与实测光谱数据鄱阳湖丰水期总悬浮物浓度反演[J]. 国土资源遥感, 2019, 31(1): 101-109.
[4] 朱利, 李云梅, 赵少华, 郭宇龙. 基于GF-1号卫星WFV数据的太湖水质遥感监测[J]. 国土资源遥感, 2015, 27(1): 113-120.
[5] 徐雯佳, 杨斌, 田力, 葛超英, 徐永利. 应用MODIS数据反演河北省海域叶绿素a浓度[J]. 国土资源遥感, 2012, 24(4): 152-156.
[6] 陈军, 陆凯, 王保军. 基于带模型的叶绿素a浓度反演精度评估[J]. 国土资源遥感, 2011, 23(4): 83-86.
[7] 陈静, 姚静.  
Landsat-5 TM影像增益偏置值对地面反射率计算影响分析
[J]. 国土资源遥感, 2010, 22(2): 45-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发