Please wait a minute...
 
国土资源遥感  2019, Vol. 31 Issue (4): 182-189    DOI: 10.6046/gtzyyg.2019.04.24
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
GF-1与Landsat8水体叶绿素a浓度协同反演——以太湖为例
封红娥1,2, 李家国2(), 朱云芳2, 韩启金3, 张宁4, 田淑芳1
1. 中国地质大学(北京)地球科学与资源学院,北京 100083
2. 中国科学院遥感与数字地球研究所,北京 100101
3. 中国资源卫星应用中心,北京 100094
4. 中华人民共和国住房和城乡建设部城乡规划管理中心,北京 100835
Synergistic inversion method of chlorophyll a concentration in GF-1 and Landsat8 imagery: A case study of the Taihu Lake
Honge FENG1,2, Jiaguo LI2(), Yunfang ZHU2, Qijin HAN3, Ning ZHANG4, Shufang TIAN1
1. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China
2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
3. China Resources Satellite Application Center, Beijing 100094, China
4. Urban and Rural Planning Management Center of the Ministry of Housing and Urban Rural Development of the People’s Republic of China, Beijing 100835, China
全文: PDF(2085 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

不同空间分辨率、光谱分辨率和辐射分辨率传感器数据的协同反演,对于提高水体叶绿素a浓度反演精度具有重要作用。以GF-1 WFV和Landsat8 OLI数据为对象,分别以单波段替代、单波段融合和三波段融合的协同方法,分析空间分辨率和光谱分辨率在多源遥感数据协同反演过程中对于提高水体叶绿素a反演精度的主导特征; 在此基础之上,进一步探索GF-1 WFV和Landsat8 OLI数据协同反演的最优组合方式,以提高叶绿素a浓度的反演精度。结果表明,在GF-1 WFV和Landsat8 OLI协同反演过程中,近红外波段光谱分辨率和辐射分辨率对精度的影响占据主导,近红外波段光谱分辨率的提高更有利于提高叶绿素a浓度的反演精度; 在蓝光波段与红光波段,则是空间分辨率越高叶绿素a浓度反演精度越高; GF-1 WFV和Landsat8 OLI最优叶绿素a协同反演光谱指数组合因子为: Landsat8 OLI近红外波段、GF-1 WFV和Landsat8 OLI融合红光波段、GF-1 WFV和Landsat8 OLI融合蓝光波段。通过实测数据验证表明,协同前GF-1 WFV和Landsat8 OLI单独反演结果的平均相对误差分别为41.93%和38.37%,优化协同反演后平均相对误差降低到17.35%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
封红娥
李家国
朱云芳
韩启金
张宁
田淑芳
关键词 太湖叶绿素a主导特征协同反演波段融合    
Abstract

Different spatial resolutions, spectral resolutions and radiation resolutions influence the accurate estimation of remotely sensed chlorophyll a concentration of water. In this study, GF-1 WFV and Landsat8 OLI imagery was used as objects, and the cooperative methods of single-band substitution, single-band fusion and three-band fusion were respectively used to analyze dominant characteristics of spatial resolution and spectral resolution for improving the precision of chlorophyll a concentration inversion in multi-source remote sensing data. On such a basis, the optimal combination of GF-1 WFV and Landsat8 OLI data was further explored so as to improve the inversion accuracy of chlorophyll a concentration and promote the application of domestic high-resolution satellite GF-1 imagery. The results show that, in the GF-1 WFV and Landsat8 OLI cooperative inversion process, the spectral resolution and radiation resolution of near infrared band dominate the characteristics, and the influence of the near infrared band spectrum resolution enhancement is more favorable for improving the inversion accuracy of chlorophyll a concentration, whereas in the blue and red bands, the higher the spatial resolution, the higher the accuracy of chlorophyll a concentration inversion. The combination factors of GF-1 WFV and Landsat8 OLI optimal chlorophyll a concentration synergistic inversion spectral index are as follows: Landsat8 OLI near infrared band, GF-1 WFV and Landsat8 OLI fused red band, GF-1 WFV and Landsat8 OLI fused blue band. The GF-1 WFV and Landsat8 OLI separate inversion accuracy with average relative errors of 41.93% and 38.37%, respectively. After optimization, the average relative error of synergistic inversion is reduced to 17.35%. This study preliminarily explored the spectral resolution and spatial resolution of GF-1 WFV and Landsat8 OLI imagery of water chlorophyll a concentration cooperative inversion dominant characteristics and the optimal coordinated way. The authors are in the hope of providing reference for the channel design of the following domestic satellites and the cooperative inversion of multi-source satellites.

Key wordsTaihu    chlorophyll a    dominant trait    cooperative inversion    band combination
收稿日期: 2018-10-19      出版日期: 2019-12-03
:  TP79  
基金资助:国家重点研发计划项目“城镇水体水质高分遥感与地面协同监测关键技术研究”(2017YFB0503902);江苏省太湖水环境综合治理科研项目“卫星遥感监测蓝藻聚集面积评价标准方法研究”共同资助(TH2018304)
通讯作者: 李家国
作者简介: 封红娥(1993-),女,硕士研究生,主要从事水环境遥感监测应用研究。Email: 1562809628@qq.com。
引用本文:   
封红娥, 李家国, 朱云芳, 韩启金, 张宁, 田淑芳. GF-1与Landsat8水体叶绿素a浓度协同反演——以太湖为例[J]. 国土资源遥感, 2019, 31(4): 182-189.
Honge FENG, Jiaguo LI, Yunfang ZHU, Qijin HAN, Ning ZHANG, Shufang TIAN. Synergistic inversion method of chlorophyll a concentration in GF-1 and Landsat8 imagery: A case study of the Taihu Lake. Remote Sensing for Land & Resources, 2019, 31(4): 182-189.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2019.04.24      或      https://www.gtzyyg.com/CN/Y2019/V31/I4/182
Fig.1  太湖区域划分示意图
卫星传感器 波段 光谱范
围/μm
空间分
辨率/m
重访周
期/d
GF-1 WFV B1 0.45~0.52 16 2
B2 0.52~0.59
B3 0.63~0.69
B4 0.77~0.89
Landsat8 OLI B1 0.43~0.45 30 16
B2 0.45~0.52
B3 0.53~0.60
B4 0.63~0.68
B5 0.85~0.89
B6 1.56~1.66
B7 2.10~2.30
B8 0.50~0.68 15
B9 1.36~1.39 30
Tab.1  GF-1 WFV与Landsat8 OLI传感器参数对比
卫星传感器 波段 最小值 最大值 全距 平均值
GF-1 WFV B1 279 600 321 131
B2 216 606 390 297
B3 132 510 378 398
B4 57 699 642 415
Landsat8 OLI B2 9 300 12 500 3 200 10 409
B3 8 037 11 844 3 807 9 820
B4 7 152 12 048 4 896 8 701
B5 6 208 24 638 18 430 7 180
Tab.2  GF-1 WFV和Landsat8 OLI数据水体区域辐射分辨率特征统计
Fig.2  GF-1 WFV和Landsat8 OLI波谱响应函数与叶绿素a反射率曲线对比
卫星传感器 波段 中心波长 有效波宽
GF-1 WFV B1 485 48
B2 555 71
B3 660 65
B4 830 119
Landsat8 OLI B2 485 60
B3 565 57
B4 655 38
B5 870 28
Tab.3  GF-1 WFV和Landsat8 OLI中心波长与有效波宽对比
卫星传感器 均值 方差 同质性 对比度 非相似性 角二阶矩 相关性
GF-1 WFV 55.8 505.7 1.0 939.4 26.0 2.2 1.0 2.0
Landsat8 OLI 50.1 238.4 1.0 466.9 18.8 2.2 1.0 2.0
Tab.4  GF-1 WFV与Landsat8 OLI纹理特征对比
反演模型 反演模型公式 R2
单独反演 CF-1 WFV y = -4 088.8x2 + 1 601x + 60.778 0.366 4
Landsat8 OLI y = 7 388.3x2 + 4 044.7x + 179.38 0.439 0
单波段替代协同反演 近红外波段替代 y = 33 245x2 + 5 391.7x + 239.25 0.859 6
红光波段替代 y = -4 752.9x2 + 1 564.6x + 31.428 0.177 2
蓝光波段替代 y = -4 364.4x2 + 1 616.2x + 59.771 0.352 9
单波段融合协同反演 近红外波段融合 y = -30.245x2 + 142.52x + 1.696 8 0.127 8
红光波段融合 y = -4 416.2x2 + 1 645.9x + 63.088 0.373 2
蓝光波段融合 y = -4 195.5x2 + 1 621.2x + 61.174 0.370 1
三波段融合协同反演 y = -21.137x2 + 133.65x + 1.596 2 0.128 5
Tab.5  叶绿素a浓度协同反演模型公式
Fig.3  叶绿素a浓度验证样本反演结果
指标 单独反演 单波段替代协同反演 单波段融合协同反演 三波段融合
协同反演
GF-1 WFV Landsat8 OLI 近红外波段 红光波段 蓝光波段 近红外波段 红光波段 蓝光波段
RMSE/(mg·m-3) 107.87 107.91 36.23 128.98 109.59 132.95 107.32 107.63 133.20
e/% 41.93 38.37 17.76 61.31 43.23 59.50 41.09 41.82 56.89
Tab.6  不同协同反演方法精度验证
Fig.4  最优协同反演模型拟合
Fig.5  叶绿素a浓度最优协同反演结果
[1] 马荣华, 戴锦芳 . 结合Landsat ETM与实测光谱估测太湖叶绿素及悬浮物含量[J]. 湖泊科学, 2005,17(2):97-103.
Ma R H, Dai J F . Quantitative estimation of chlorophyll-a and total suspended matter concentration with Landsat ETM based on field spectral features of Lake Taihu[J]. Journal of Lake Sciences, 2005,17(2):97-103.
[2] Zimba P V, Gitelson A . Remote estimation of chlorophyll concentration in hyper-eutrophic aquatic systems:Model tuning and accuracy optimization[J]. Aquaculture, 2006,256(1-4):272-286.
[3] Dall'Olmo G, Gitelson A A . Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters:Experimental results[J]. Applied Optics, 2005,44(3):412-422.
[4] 徐雯佳, 杨斌, 田力 , 等. 应用MODIS数据反演河北省海域叶绿素a浓度[J]. 国土资源遥感, 2012,24(4):152-156.doi: 10.6046/gtzyyg.2012.04.25.
doi: 10.6046/gtzyyg.2012.04.25
Xu W J, Yang B, Tian L , et al. Retrieval of chlorophyll-a concentration by using MODIS data in Hebei Sea Area[J]. Remote Sensing for Land and Resources, 2012,24(4):152-156.doi: 10.6046/gtzyyg.2012.04.25.
[5] Elalem A, Chokmani K, Laurion I . Comparative analysis of four models to estimate chlorophyll-a concentration in Case-2 waters using moderate resolution imaging spectroradiometer (MODIS) imagery[J]. Remote Sensing, 2012,4(8):2373-2400.
[6] 张明慧, 苏华, 季博文 . MODIS时序影像的福建近岸叶绿素a浓度反演[J]. 环境科学学报, 2018,38(12):4831-4839.
Zhang M H, Su H, Ji B W . Retrieving nearshore chlorophyll-a concentration using MODIS time-series images in the Fujian Province(China)[J]. Acta Scientiae Circumstantiae, 2018,38(12):4831-4839.
[7] 旷达, 韩秀珍, 刘翔 . 基于环境一号卫星的太湖叶绿素a浓度提取[J]. 中国环境科学, 2010,30(9):1268-1273.
doi:
Kuang D, Han X Z, Liu X . Quantitative estimation of Taihu chlorophyll-a concentration using HJ-1A and 1B CCD imagery[J]. China Environmental Science, 2010,30(9):1268-1273.
[8] 唐军武, 田国良, 汪小勇 , 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004,8(1):37-44.
doi: 10.3321/j.issn:1007-4619.2004.01.006
Tang J W, Tian G L, Wang X Y , et al. The methods of water spectra measurement and analysis Ⅰ:Above-water method[J]. Journal of Remote Sensing, 2004,8(1):37-44.
[9] 陈宇炜, 陈开宁, 胡耀辉 . 浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨[J]. 湖泊科学, 2006,18(5):550-552.
Chen Y W, Chen K N, Hu Y H . Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method[J]. Journal of Lake Sciences, 2006,18(5):550-552.
[10] Lathrop R G, Lillesand T M, Yandell B S . Testing the utility of simple multi-data Thematic Mapper calibration algorithms for monitoring turbid inland water[J]. International Journal of Remote Sensing, 1991,12(10):2045-2063.
[11] Kahru M, Michell B G, Diaz A , et al. MODIS detects a devastating algal bloom in Paracas Bay,Peru[J]. EOS Transactions American Geophysical Union, 2004,85(45):465-472.
[12] 姜晓晨, 邓正栋, 武国瑛 , 等. Landsat 8 OLI多光谱与全色影像融合算法的比较[J]. 信息技术与网络安全, 2018,37(8):31-35.
Jiang X C, Deng Z D, Wu G Y , et al. Comparison on fusion algorithms of Landsat 8 OLI multi-spectral and panchromatic images[J]. Information Technology and Network Security, 2018,37(8):31-35.
[13] Antoine D, Morel A . A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument):Principle and implementation for atmospheres carrying various aerosols including absorbing ones[J]. International Journal of Remote Sensing, 1999,20(9):1875-1916.
[14] Gitelson. A . The peak near 700 nm on radiance spectral of algae and water:Relationships of its magnitude and position with chlorophyll concentration[J]. International Journal of Remote Sensing, 1992,13(17):3367-3373.
[15] Gitelson A A, Merzlyak M N . Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003,160(3):271-282.
[16] Gons H J . Optical teledetection of chlorophyll a in turbid inland waters[J]. Environmental Science and Technology, 1999,33(7):1127-1132.
[17] 疏小舟, 尹球, 匡定波 . 内陆水体藻类叶绿素浓度与反射光谱特征的关系[J]. 遥感学报, 2000,4(l):41-45.
Shu X Z, Ying Q, Kuang D B . Relationship between algal chlorophyll concentration and spectral reflectance of inland water[J]. Journal of Remote Sensing, 2000,4(l):41-45.
[18] 王珊珊, 李云梅, 王永波 . 太湖水体叶绿素浓度反演模型适宜性分析[J]. 湖泊科学, 2015,27(1):150-162.
Wang S S, Li Y M, Wang Y B . Suitability of the retrieval models for estimating chlorophyll concentration in Lake Taihu[J]. Journal of Lake Sciences, 2015,27(1):150-162.
[1] 魏浩翰, 许仁杰, 杨强, 周权平. 多源卫星测高数据监测太湖水位变化及影响分析[J]. 自然资源遥感, 2021, 33(3): 130-137.
[2] 盖颖颖, 王章军, 杨雷, 周燕, 龚金龙. 金沙滩近岸水体叶绿素a和悬浮物遥感反演研究[J]. 国土资源遥感, 2020, 32(3): 129-135.
[3] 刘文雅, 邓孺孺, 梁业恒, 吴仪, 刘永明. 基于辐射传输模型的巢湖叶绿素a浓度反演[J]. 国土资源遥感, 2019, 31(2): 102-110.
[4] 张月, 肖彧, 常晶晶, 刘健, 王亚琼, 贺春燕, 何冰. 大气校正对基于遥感指数提取藻华信息的影响[J]. 国土资源遥感, 2015, 27(3): 7-12.
[5] 朱利, 李云梅, 赵少华, 郭宇龙. 基于GF-1号卫星WFV数据的太湖水质遥感监测[J]. 国土资源遥感, 2015, 27(1): 113-120.
[6] 陈军, 权文婷. “伪暗像元”表观反射率的尺度特性——以AWiFS和LISS传感器图像为例[J]. 国土资源遥感, 2013, 25(2): 33-36.
[7] 夏双, 阮仁宗, 张月, 颜梅春. 气溶胶光学厚度对蓝藻水华信息提取的影响[J]. 国土资源遥感, 2013, 25(1): 33-38.
[8] 徐雯佳, 杨斌, 田力, 葛超英, 徐永利. 应用MODIS数据反演河北省海域叶绿素a浓度[J]. 国土资源遥感, 2012, 24(4): 152-156.
[9] 陈军, 陆凯, 王保军. 基于带模型的叶绿素a浓度反演精度评估[J]. 国土资源遥感, 2011, 23(4): 83-86.
[10] 马红章, 柳钦火, 闻建光, 施建. 热红外与L波段土壤温度的数值模拟及差异分析[J]. 国土资源遥感, 2011, 23(2): 26-32.
[11] 李旭文, 黎刚, 缪蓓蓓. Google Earth和ArcGIS 9.2软件在太湖水污染及蓝藻监测数据展现中的应用[J]. 国土资源遥感, 2008, 20(1): 97-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发