Please wait a minute...
 
国土资源遥感  2020, Vol. 32 Issue (3): 157-164    DOI: 10.6046/gtzyyg.2020.03.21
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
南京市生态红线区高分辨率遥感精准监测方法与应用
张鹏1,2,3(), 林聪1,2,3, 杜培军1,2,3(), 王欣1,2,3, 唐鹏飞1,2,3
1.南京大学地理与海洋科学学院,南京 210023
2.南京大学江苏省地理信息技术重点实验室,南京 210023
3.自然资源部国土卫星遥感应用重点实验室,南京 210023
Accurate monitoring of ecological redline areas in Nanjing City using high resolution satellite imagery
ZHANG Peng1,2,3(), LIN Cong1,2,3, DU Peijun1,2,3(), WANG Xin1,2,3, TANG Pengfei1,2,3
1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, Nanjing 210023, China
3. Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, Nanjing 210023, China
全文: PDF(6736 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

工业化和城镇化进程的快速发展带来了一系列生态环境问题,严格的生态红线监管政策对于维护国家或区域生态安全具有重要意义。为满足生态红线精准监测的需求,以南京市生态红线区为研究区,利用北京二号高分辨率遥感影像开展了生态红线区地表覆盖精细分类与综合分析。针对北京二号数据的特点,设计了从数据预处理到面向对象分类的技术流程,获得了地表覆盖精细分类专题图,分类总体精度达到91.65%。统计结果显示南京市生态红线区主体由林地、耕地、水体3种地表覆盖类型构成,3种地类分别占到整个研究区的33%,21%和25%; 表征人类活动的建筑物和人工堆掘地等地类占比达到6%和2%。实验结果表明,利用多时相北京二号影像可以监测到中低分辨率影像难以识别的地表覆盖空间细节变化,达到生态红线精准、动态监测目的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鹏
林聪
杜培军
王欣
唐鹏飞
关键词 生态红线区北京二号精准监测面向对象方法    
Abstract

The rapid development of China’s industrialization and urbanization has brought about a series of ecological and environmental problems. China has proposed a new ecological redline policy (ERP), which plays an important role in protecting natural ecosystems and guaranteeing the national ecological safety. For accurate monitoring of ecological redline areas (ERAs), the high temporal-and-spatial resolution BJ-2 satellite imagery was used for land cover classification of the ERAs of Nanjing. Given the characteristics of BJ-2 satellite imagery, a workflow from data preprocessing to object-based land cover classification was established. The overall accuracy of the classification can reach to 91.65%. It is shown that the ERAs of Nanjing is mainly composed of three kinds of land cover types: forest, cultivated land and water, which occupy 33%, 21% and 25% of the study area respectively. In addition, buildings and artificial pile digging account for 6% and 2%, which can represent human influence to a certain extent. The experimental results show that the multi-temporal BJ-2 imagery can be used to detect the detailed changes of land cover that are difficult to identify in low- and medium-resolution images, and achieve the purpose of dynamic and accurate monitoring of ERAs.

Key wordsecological redline areas (ERAs)    BJ-2    accurate monitoring    object-based methods
收稿日期: 2019-07-05      出版日期: 2020-10-09
:  TP79  
基金资助:国家自然科学基金重点项目“长时间序列遥感影像智能处理与地理过程时空分析”(41631176)
通讯作者: 杜培军
作者简介: 张鹏(1994-),男,博士研究生,研究方向为资源环境遥感。Email: pzhangrs@smail.nju.edu.cn
引用本文:   
张鹏, 林聪, 杜培军, 王欣, 唐鹏飞. 南京市生态红线区高分辨率遥感精准监测方法与应用[J]. 国土资源遥感, 2020, 32(3): 157-164.
ZHANG Peng, LIN Cong, DU Peijun, WANG Xin, TANG Pengfei. Accurate monitoring of ecological redline areas in Nanjing City using high resolution satellite imagery. Remote Sensing for Land & Resources, 2020, 32(3): 157-164.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020.03.21      或      https://www.gtzyyg.com/CN/Y2020/V32/I3/157
Fig.1  南京市生态红线区分布
类型 参数
空间分辨率 全色: 0.8 m; 多光谱: 3.2 m
重复观测周期 1 d
波段范围 蓝: 440~510 nm; 绿: 510~590 nm; 红: 600~670 nm; 近红外: 760~910 nm; 全色: 450~650 nm
Tab.1  北京二号卫星参数
类别
序号
主要地表覆盖类型 分割
尺度
光谱因
子权重
紧凑度
权重
1 林地、草地为主的植被覆盖地表 85 0.1 0.5
2 建筑物、道路、人工堆掘地为主的人工地表 85 0.2 0.5
3 水体为主的地表 90 0.2 0.5
4 耕地为主的地表 75 0.1 0.5
Tab.2  各地表覆盖类型最佳分割参数
Fig.2  最佳分割参数下各地表覆盖类型分割效果
地表类型 草地 林地 耕地 建筑物 道路 水体 人工堆掘地 合计 用户精度/%
草地 1 013 292 119 0 0 0 1 1 425 71.09
林地 40 6 792 213 4 9 2 0 7 060 92.28
耕地 43 37 2 290 6 7 20 9 2 412 89.04
建筑物 6 1 48 1 273 29 11 3 1 371 92.85
道路 4 0 10 70 916 0 0 1 000 91.60
水体 0 0 3 4 62 5 495 20 5 584 97.88
人工堆掘地 6 7 10 68 0 8 471 5 70 82.63
合计 1 112 7 129 2 693 1 425 1 023 5 536 504 19 912
生产者精度/% 67.00 95.27 84.41 86.31 89.54 98.90 93.45
总体精度: 91.65%; Kappa系数: 0.889 8
Tab.3  地表覆盖分类精度评价
Fig.3  南京市生态红线区地表覆盖分类结果
Fig.4  试验区地表覆盖变化
Fig.5  长江新济洲湿地公园及其地表覆盖类型
地表覆盖类型 面积/km2 占比/%
水体 142.366 7 62.76
耕地 35.912 2 15.83
林地 19.354 8 8.53
草地 16.706 7 7.36
建筑物 6.704 3 2.95
人工堆掘地 3.964 5 1.75
道路 1.848 9 0.82
Tab.4  湿地公园和重要湿地的地表覆盖面积统计
[1] 林勇, 樊景凤, 温泉, 等. 生态红线划分的理论和技术[J]. 生态学报, 2016,36(5):1244-1252.
doi: 10.5846/stxb201407091405
Lin Y, Fan J F, Wen Q, et al. Primary exploration of ecological theories and technologies for delineation of ecological redline zones[J]. Acta Ecologica Sinica, 2016,36(5):1244-1252.
[2] Kennedy R E, Yang Z Q, Cohen W B. Detecting trends in forest disturbance and recovery using yearly landsat time series:1.LandTrendr-temporal segmentation algorithms[J]. Remote Sensing of Environment, 2010,114(12):2897-2910.
doi: 10.1016/j.rse.2010.07.008
[3] Cohen W B, Yang Z Q, Kennedy R E, et al. A LandTrendr multispectral ensemble for forest disturbance detection[J]. Remote Sensing of Environment, 2018,205:131-140.
doi: 10.1016/j.rse.2017.11.015
[4] Verbesselt J, Zeileis A, Herold M. Near real-time disturbance detection using satellite image time series[J]. Remote Sensing of Environment, 2012,123(123):98-108.
doi: 10.1016/j.rse.2012.02.022
[5] Huang C Q, Goward S N, Masek J G, et al. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J]. Remote Sensing of Environment, 2010,114(1):183-198.
doi: 10.1016/j.rse.2009.08.017
[6] Zhu Z, Woodcock C E. Continuous change detection and classification of land cover using all available Landsat data[J]. Remote Sensing of Environment, 2014,144(1):152-171.
doi: 10.1016/j.rse.2014.01.011
[7] Goetz S, Gross J, Hansen A, et al. Landscape conditions and trends in and around delaware water gap and upper delaware national recreation areas:Summary of findings[R].Report,NASA Applications Program,NPS I&M Program, 2011.
[8] 严恩萍, 林辉, 党永峰, 等. 2000—2012年京津风沙源治理区植被覆盖时空演变特征[J]. 生态学报, 2014,34(17):5007-5020.
doi: 10.5846/stxb201305251179
Yan E P, Lin H, Dang Y F, et al. The spatiotemporal changes of vegetation cover in Beijing-Tianjin sandstorm source control region during 2000—2012[J]. Acta Ecologica Sinica, 2014,34(17):5007-5020.
[9] Chéret V, Denux J P. Analysis of MODIS NDVI time series to calculate indicators of mediterranean forest fire susceptibility[J]. Mapping Sciences & Remote Sensing, 2011,48(2):171-194.
[10] 徐涵秋. 水土流失区生态变化的遥感评估[J]. 农业工程学报, 2013,(7):91-97.
Xu H Q. Assessment of ecological change in soil loss area using remote sensing technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(7):91-97.
[11] 满苏尔·沙比提, 娜斯曼·那斯尔丁, 阿尔斯朗·马木提. 托木尔峰国家级自然保护区土地利用/覆被生态服务价值变化分析[J]. 地理研究, 2016,35(11):2116-2124.
doi: 10.11821/dlyj201611009
Sabit M, Nasirdin N, Mamut A. Analysis on the change of land use/cover ecological service value in Tomur National Nature Reserve[J]. Geographical Research, 2016,35(11):2116-2124.
[12] 国务院.国务院关于加强环境保护重点工作的意见[EB/OL].( 2011-10-20)[2019-10-17]. http://www.gov.cn/zhuanti/2015-06/13/content_2878991.htm.
State Council of China.Opinions of the state council on strengthening the key work of environmental protection[EB/OL].(2011-10-20)[2019-10-17]. http://www.gov.cn/zhuanti/2015-06/13/content_2878991.htm.
[13] Ma L, Li M C, Ma X X, et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2017,130:277-293.
[14] 陈玲, 梁树能, 周艳, 等. 国产高分卫星数据在高海拔地区地质调查中的应用潜力分析[J]. 国土资源遥感, 2015,27(1):140-145.doi: 10.6046/gtzyyg.2015.01.22.
doi: 10.6046/gtzyyg.2015.01.22
Chen L, Liang S N, Zhou Y, et al. Potential of applying domestic high-resolution remote sensing data to geological survey in high altitudes[J]. Remote Sensing for Land and Resources, 2015,27(1):140-145.doi: 10.6046/gtzyyg.2015.01.22.
[15] 王永立, 董卫宏. 资源一号02C卫星数据在地质公园调查中的应用——以天津市蓟县为例[J]. 国土资源遥感, 2017,29(s1):95-100.doi: 10.6046/gtzyyg.2017.s1.16.
Wang Y L, Dong W H. Application of ZY1-02C remote sensing data to the investigation of geoparks:Taking Jixian County,Tianjin City for example[J]. Remote Sensing for Land and Resources, 2017,29(s1):95-100.doi: 10.6046/gtzyyg.2017.s1.16.
[16] 杜培军, 单丹丹, 夏俊士, 等. 北京一号小卫星数据的城市景观格局监测分析——以徐州市城区为例[J]. 地球信息科学学报, 2010,12(6):855-862.
Du P J, Shan D D, Xia J S, et al. Monitoring and analyzing urban landscape pattern change using Beijing-1 small satellite remote sensing data:Taking the urban area of Xuzhou City as an example[J]. Journal of Geo-Information Science, 2010,12(6):855-862.
[17] 郭海会, 王卷乐, 周玉洁, 等. 面向对象的鄱阳湖南矶湿地国家级自然保护区烧荒地信息提取[J]. 地球信息科学学报, 2014,16(3):499-506.
doi: 10.3724/SP.J.1047.2014.00499
Guo H H, Wang J L, Zhou Y J, et al. The moorburn information extraction on Poyang Lake Nanji Wetland Nature Reserve area based on the object-oriented classification method[J]. Journal of Geo-Information Science, 2014,16(3):499-506.
[18] 苏伟, 李京, 陈云浩, 等. 基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例[J]. 遥感学报, 2007,11(4):521-530.
doi: 10.11834/jrs.20070472
Su W, Li J, Chen Y H, et al. Object-oriented urban land-cover classification of multi-scale image segmentation method:A case study in Kuala Lumpur City Center,Malaysia[J]. Journal of Remote Sensing, 2007,11(4):521-530.
doi: 10.11834/jrs.20070472
[19] Blaschke T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(1):2-16.
doi: 10.1016/j.isprsjprs.2009.06.004
[20] Pande-Chhetri R, Abd-Elrahman A, Liu T, et al. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery[J]. European Journal of Remote Sensing, 2017,50(1):564-576.
doi: 10.1080/22797254.2017.1373602
[21] 方朝阳, 邬浩, 陶长华, 等. 鄱阳湖南矶湿地景观信息高分辨率遥感提取[J]. 地球信息科学学报, 2016,18(6):847-856.
doi: 10.3724/SP.J.1047.2016.00847
Fang C Y, Wu H, Tao C H, et al. The wetland information extraction research of Nanji Wetland in Poyang Lake based on high resolution remote sensing image[J]. Journal of Geo-Information Science, 2016,18(6):847-856.
[22] Myint S W, Gober P, Brazel A, et al. Per-pixel vs.object-based classification of urban land cover extraction using high spatial resolution imagery[J]. Remote Sensing of Environment, 2011,115(5):1145-1161.
doi: 10.1016/j.rse.2010.12.017
[23] 陶超, 谭毅华, 蔡华杰, 等. 面向对象的高分辨率遥感影像城区建筑物分级提取方法[J]. 测绘学报, 2010,39(1):39-45.
Tao C, Tan Y H, Cai H J, et al. Object-oriented method of hierarchical urban building extraction from high-resolution remote-sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2010,39(1):39-45.
[24] Li X X, Myint S W, Zhang Y J, et al. Object-based land-cover classification for metropolitan Phoenix,Arizona,using aerial photography[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,33(1):321-330.
doi: 10.1016/j.jag.2014.04.018
[25] Duro D C, Franklin S E, Dubé M G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery[J]. Remote Sensing of Environment, 2012,118:259-272.
doi: 10.1016/j.rse.2011.11.020
[26] 程乾, 陈金凤. 基于高分1号杭州湾南岸滨海陆地土地覆盖信息提取方法研究[J]. 自然资源学报, 2015,30(2):350-360.
Chen Q, Chen J F. Research on the extraction method of landcover information in southern coastal land of Hangzhou Bay based on GF-1 image[J]. Journal of Natural Resources, 2015,30(2):350-360.
[27] Dronova I, Gong P, Clinton N E, et al. Landscape analysis of wetland plant functional types:The effects of image segmentation scale,vegetation classes and classification methods[J]. Remote Sensing of Environment, 2012,12:357-369.
[28] 薄树奎, 韩新超, 丁琳. 面向对象影像分类中分割参数的选择[J]. 武汉大学学报(信息科学版), 2009,34(5):514-517.
Bo S K, Han X C, Ding L. Automatic selection of segmentation parameters for object oriented image classification[J]. Geomatics and Information Science of Wuhan University, 2009,34(5):514-517.
[29] Pu R, Landry S. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species[J]. Remote Sensing of Environment, 2012,124:516-533.
doi: 10.1016/j.rse.2012.06.011
[30] 杨凯歌, 冯学智, 肖鹏峰, 等. 优化子空间SVM集成的高光谱图像分类[J]. 遥感学报, 2016,20(3):409-419.
Yang K G, Feng X Z, Xiao P F, et al. Optimal subspace ensemble with SVM for hyperspectral image classification[J]. Journal of Remote Sensing, 2016,20(3):409-419.
[31] 何灵敏, 沈掌泉, 孔繁胜, 等. SVM在多源遥感图像分类中的应用研究[J]. 中国图象图形学报, 2007,12(4):648-654.
doi: 10.11834/jig.20070410
He L M, Shen Z Q, Kong F S, et al. Study on multi-source remote sensing images classification with SVM[J]. Journal of Image and Graphics, 2007,12(4):648-654.
doi: 10.11834/jig.20070410
[32] 燕守广, 林乃峰, 沈渭寿. 江苏省生态红线区域划分与保护[J]. 生态与农村环境学报, 2014,30(3):294-299.
Yan S G, Lin N F, Shen W S. Delineation and protection of ecological red lines in Jiangsu Province[J]. Rural Eco-Environment, 2014,30(3):294-299.
[1] 马超, 杨飞, 王学成. 基于中尺度光谱和时序物候特征提取南方丘陵山区茶园[J]. 国土资源遥感, 2019, 31(1): 141-148.
[2] 梁建平, 马大喜, 毛德华, 王宗明. 双台河口国际重要湿地芦苇地上生物量遥感估算[J]. 国土资源遥感, 2016, 28(3): 60-66.
[3] 蔡红玥, 姚国清. 基于分水岭算法的高分遥感图像道路提取优化方法[J]. 国土资源遥感, 2013, 25(3): 25-29.
[4] 徐海卿, 李培军, 沈毅. 加入不变矩的高分辨率遥感图像分类[J]. 国土资源遥感, 2008, 20(2): 9-13.
[5] 孙永军, 童庆禧, 秦其明. 利用面向对象方法提取湿地信息[J]. 国土资源遥感, 2008, 20(1): 79-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发