Please wait a minute...
 
国土资源遥感  2021, Vol. 33 Issue (2): 20-26    DOI: 10.6046/gtzyyg.2020244
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于表观热惯量与温度植被指数的FY-3B土壤水分降尺度研究
宋承运1(), 胡光成2, 王艳丽1, 汤超1
1.安徽理工大学空间信息与测绘工程学院,淮南 232001
2.中国科学院空天信息创新研究院遥感科学国家重点实验室,北京 100101
Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index
SONG Chengyun1(), HU Guangcheng2, WANG Yanli1, TANG Chao1
1. School of Geomatics, Anhui University of Science and Technology, Huainan 232001, China
2. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
全文: PDF(2520 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为进一步研究风云三号(FY-3B)土壤水分降尺度获取高分辨率土壤水分的方法,使其更适用于农业、水文、生态等区域尺度的应用要求,以MODIS为数据源,青藏高原那曲地区为研究区,利用表观热惯量模型(apparent thermal inertia,ATI)与温度植被指数(temperature vegetation index, TVI)模型在不同植被覆盖度下适用的特点,构建综合ATI与TVI的土壤水分反演模型; 结合低分辨率FY-3B土壤水分产品,利用土壤水分降尺度方法,获取高分辨率下土壤水分反演模型系数,并得到高分辨率土壤水分。通过与地面观测数据对比,降尺度后土壤水分与实测数据的R2在0.4以上,RMSE在0.055~0.103 cm3/cm3之间,表明降尺度后的土壤水分能够较好地反映区域土壤水分的空间分布与变化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋承运
胡光成
王艳丽
汤超
关键词 降尺度FY-3B土壤水分表观热惯量温度植被指数    
Abstract

In order to further study the method of obtaining high-resolution soil moisture by downscaling FY-3B soil moisture and make it more suitable for agricultural and hydrological simulation, the authors constructed a comprehensive ATI and TVI by using MODIS data in Naqu area. Combined with low resolution FY-3B soil moisture products, the coefficients of soil moisture inversion model under high resolution were obtained by using soil moisture downscaling method, and the high-resolution soil moisture was obtained. Compared with the ground observation data, the R2 of the downscaling soil moisture and the measured data is above 0.4, and the RMSE is between 0.055 and 0.103 cm3/cm3, indicating that the downscaling soil moisture can better reflect the spatial distribution and change of soil moisture.

Key wordsdownscaling    FY-3B soil moisture    apparent thermal inertia    temperature vegetation index
收稿日期: 2020-08-07      出版日期: 2021-07-21
ZTFLH:  TP79  
基金资助:安徽省高等学校自然科学研究项目“不同植被覆盖度下风云三号土壤水分产品降尺度方法研究”(KJ2017A072);国家重点研发计划“主要粮食作物气象灾害监测技术体系研发”(2017YFD0300402);国家自然科学基金项目“基于全球涡动相关数据及地表蒸散发模型的微波遥感土壤湿度融合研究”(41701495)
作者简介: 宋承运(1981-),男,博士,讲师,主要从事定量遥感、环境遥感研究。Email: schyun007@163.com
引用本文:   
宋承运, 胡光成, 王艳丽, 汤超. 基于表观热惯量与温度植被指数的FY-3B土壤水分降尺度研究[J]. 国土资源遥感, 2021, 33(2): 20-26.
SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2020244      或      https://www.gtzyyg.com/CN/Y2021/V33/I2/20
Fig.1  研究区高程及地面观测站点示意图
Fig.2  技术路线
站点 日期 R a b c d
M08 7月
10月 0.763 0.120 -0.310 -0.005 -0.827
M11 7月 0.878 0.049 -0.040 -0.001 0.770
10月 0.868 0.156 -0.407 -0.007 -1.334
M12 7月 0.705 0.007 0.088 -0.002 0.193
10月 0.860 0.061 0.187 -0.004 0.321
M14 7月
10月 0.779 0.291 -0.837 -0.015 -3.213
M16 7月
10月 0.874 0.163 -0.278 -0.007 -1.291
M17 7月
10月 0.863 0.179 -0.535 -0.006 -1.051
M18 7月 0.861 0.023 0.011 -0.004 1.295
10月 0.755 0.114 -0.269 -0.004 -0.575
M19 7月 0.706 0.023 -0.055 -0.001 0.521
10月 0.907 0.168 -0.276 -0.005 -0.702
M21 7月
10月 0.913 0.168 -0.276 -0.005 -0.702
Tab.1  模型(式(7))回归分析相关系数R与模型系数
Fig.3  相关系数时间序列图
Fig.4  FY-3B土壤水分与降尺度后土壤水分空间分布图
Fig.5  降尺度土壤水分与地面观测值散点图
Fig.6  FY-3B土壤水分与地面观测值时间序列
[1] Chen C F, Son N T, Chang L Y, et al. Monitoring of soil moisture variability in relation to rice cropping systems in the Vietnamese Mekong Delta using MODIS data[J]. Applied Geography, 2011, 31(2):463-475.
doi: 10.1016/j.apgeog.2010.10.002
[2] Njoku E G, Jackson T J, Lakshmi V, et al. Soil moisture retrieval from AMSR-E[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):215-229.
doi: 10.1109/TGRS.2002.808243
[3] Merlin O, Walker J P, Chehbouni A, et al. Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency[J]. Remote Sensing of Environment, 2008, 112(10):3935-3946.
doi: 10.1016/j.rse.2008.06.012
[4] Narayan U, Lakshmi V, Njoku E G. Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the Soil Moisture Experiment in 2002 (SMEX02)[J]. Remote Sensing of Environment, 2004, 92(4):483-496.
doi: 10.1016/j.rse.2004.05.018
[5] Zhao W, Li A. A comparison study on empirical microwave soil moisture downscaling methods based on the integration of microwave-optical/IR data on the Tibetan Plateau[J]. International Journal of Remote Sensing, 2015, 36(19-20):4986-5002.
doi: 10.1080/01431161.2015.1041178
[6] Chauhan N S, Miller S, Ardanuy P. Spaceborne soil moisture estimation at high resolution:A microwave-optical/IR synergistic approach[J]. International Journal of Remote Sensing, 2003, 24(22):4599-4622.
doi: 10.1080/0143116031000156837
[7] Piles M, Camps A, Mercè V, et al. Downscaling SMOS-derived soil moisture using MODIS visible/infrared data[J]. IEEE Transactions on Geoence and Remote Sensing, 2011, 49:3156-3166.
[8] 曹永攀, 晋锐, 韩旭军, 等. 基于MODIS和AMSR-E遥感数据的土壤水分降尺度研究[J]. 遥感技术与应用, 2011, 26(5):590-597.
Cao Y P, Jin R, Han X J, et al. A downscaling method for AMSR-E soil moisture using MODIS derived dryness index[J]. Remote Sensing Technology and Application, 2011, 26(5):590-597.
[9] 孟祥金, 毛克彪, 孟飞, 等. 基于空间权重分解的降尺度土壤水分产品的中国土壤水分时空格局研究[J]. 高技术通讯, 2019, 29(4):104-114.
Meng X J, Mao K B, Meng F, et al. Temporal and spatial patterns of soil moisture in China based on spatial weight decomposition and downscaling soil moisture products[J]. High Technology Letters, 2019, 29(4):104-114.
[10] Song C Y, Jia L. A method for downscaling FengYun-3B soil moisture based on apparent thermal inertia[J]. Remote Sensing, 2016, 8(9):1-16.
doi: 10.3390/rs8010001
[11] Kim S, Balakrishnan K, Liu Y, et al. Spatial disaggregation of coarse soil moisture data by using high-resolution remotely sensed vegetation products[J]. IEEE Geoence & Remote Sensing Letters, 2017, 14(9):1604-1608.
[12] 赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.
Zhao Y S. Analysis principle and method of remote sensing applications[M]. Beijing: Science Press, 2003.
[13] 王鹏新, 龚健雅, 李小文. 条件植被温度指数及其在干旱监测中的应用[J]. 武汉大学学报(信息科学版), 2001, 26(5):412-418.
Wang P X, Gong J Y, Li X W. Vegetation-temperature condition index and its application for drought monitoring[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5):412-418.
[14] Yang K, Qin J, Zhao L, et al. A multiscale soil moisture and freeze-thaw monitoring network on the Third Pole[J]. Bulletin of the American Meteorological Society, 2013, 94(12):1907-1916.
doi: 10.1175/BAMS-D-12-00203.1
[15] Shi J C, Jiang L M, Zhang L, et al. Physically based estimation of bare-surface soil moisture with the passive radiometers[J]. IEEE Transactions on Geoscience & Remote Sensing, 2006, 44:3145-3153.
[16] Zhang N, Shi J, Sun G, et al. A simple algorithm for retrieval of the optical thickness at L-band from SMOS data[C]// IEEE International Geoscience & Remote Sensing Symposium.IEEE, 2012:198-210.
[17] Price J C. On the analysis of thermal infrared imagery:The limited utility of apparent thermal inertia[J]. Remote Sensing of Environment, 1985, 18(1):59-73.
doi: 10.1016/0034-4257(85)90038-0
[18] 吴黎, 张有智, 解文欢, 等. 改进的表观热惯量法反演土壤含水量[J]. 国土资源遥感, 2013, 25(1):44-49.doi: 10.6046/gtzyyg.2013.01.08.
doi: 10.6046/gtzyyg.2013.01.08
Wu L, Zhang Y Z, Xie W H, et al. The inversion of soil water content by the improved apparent thermal inertia[J]. Remote Sensing for Land and Resources, 2013, 25(1):44-49.doi: 10.6046/gtzyyg.2013.01.08.
doi: 10.6046/gtzyyg.2013.01.08
[19] 魏伟, 任皓晨, 赵军, 等. 基于MODIS的ATI和TVI组合法反演石羊河流域土壤含水量[J]. 国土资源遥感, 2011, 23(2):104-109.doi: 10.6046/gtzyyg.2011.02.19.
doi: 10.6046/gtzyyg.2011.02.19
Wei W, Ren H C, Zhao J, et al. Retrieving soil moisture of shiyang river basin by ATI and TVI based on EOS /MODIS data[J]. Remote Sensing for Land and Resources, 2011, 23(2):104-109.doi: 10.6046/gtzyyg.2011.02.19.
doi: 10.6046/gtzyyg.2011.02.19
[20] 张文, 任燕, 马晓琳, 等. 基于综合干旱指数的淮河流域土壤含水量反演[J]. 国土资源遥感, 2018, 30(2):73-79.doi: 10.6046/gtzyyg.2018.02.10.
doi: 10.6046/gtzyyg.2018.02.10
Zhang W, Ren Y, Ma X L, et al. Estimation of soil moisture with drought indices in Huaihe river basin of east China[J]. Remote Sensing for Land and Resources, 2018, 30(2):73-79.doi: 10.6046/gtzyyg.2018.02.10.
doi: 10.6046/gtzyyg.2018.02.10
[21] Carlson T N, Ripley D A. On the relation between NDVI,fractional vegetation cover,and leaf area index[J]. Remote Sensing of Environment, 1997, 62(3):241-252.
doi: 10.1016/S0034-4257(97)00104-1
[22] Cui Y, Chen X, Xiong W, et al. A soil moisture spatial and temporal resolution improving algorithm based on multi-source remote sensing data and GRNN model[J]. Remote Sensing, 2020, 12(45):1-13.
doi: 10.3390/rs12010001
[23] Zhang Y, Chen Y, Li J, et al. A simple method for converting 1-km resolution daily clear-sky LST into real LST[J]. Remote Sensing, 2020, 12(10):1-23.
doi: 10.3390/rs12010001
[1] 李显风, 袁正国, 邓卫华, 杨立苑, 周雪莹, 胡丽丽. 融合多种机器学习模型的2 m气温空间降尺度方法[J]. 自然资源遥感, 2023, 35(1): 57-65.
[2] 杜懿, 王大洋, 王大刚. GPM卫星降水产品空间降尺度研究——以贵州省为例[J]. 自然资源遥感, 2021, 33(4): 111-120.
[3] 范田亿, 张翔, 黄兵, 钱湛, 姜恒. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4): 209-218.
[4] 朱瑜馨, 吴门新, 鲍艳松, 李鑫川, 张锦宗. FY-3D/MWRI L1B亮温LST反演与降尺度研究[J]. 自然资源遥感, 2021, 33(3): 27-35.
[5] 熊俊楠, 李伟, 刘志奇, 程维明, 范春捆, 李进. 基于GWR模型的青藏高原地区TRMM数据降尺度研究[J]. 国土资源遥感, 2019, 31(4): 88-95.
[6] 徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018, 30(3): 181-188.
[7] 华俊玮, 祝善友, 张桂欣. 基于随机森林算法的地表温度降尺度研究[J]. 国土资源遥感, 2018, 30(1): 78-86.
[8] 宋扬, 房世波, 梁瀚月, 柯丽娜. 基于MODIS数据的农业干旱遥感指数对比和应用[J]. 国土资源遥感, 2017, 29(2): 215-220.
[9] 胡猛, 冯起, 席海洋. 基于MODIS数据的干旱区土壤水分反演[J]. 国土资源遥感, 2014, 26(1): 78-82.
[10] 荣媛, 杨永民. 地表辐射温度取代地表温度的可行性分析--以"风云2号"C星与MODIS数据为例[J]. 国土资源遥感, 2011, 23(4): 14-19.
[11] 孙英君, 王劲峰. 一种空气饱和差区域分布的推算方法[J]. 国土资源遥感, 2004, 16(1): 23-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发