Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 76-84    DOI: 10.6046/gyzyyg.2023379
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于变换域多尺度加权神经网络的全色锐化
马飞(), 孙陆鹏(), 杨飞霞, 徐光宪
辽宁工程技术大学电子与信息工程学院,葫芦岛 125105
Pansharpening based on the multiscale weighted neural network in the transform domain
MA Fei(), SUN Lupeng(), YANG Feixia, XU Guangxian
School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, China
全文: PDF(3328 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了解决全色锐化过程中存在的空间与光谱信息融合问题,该文提出了一种在非下采样剪切波变换(non-subsampled shearlet transform, NSST)域下,基于多尺度加权的脉冲耦合神经网络(pulse-coupled neural network, PCNN)和低秩稀疏分解的全色图像和多光谱图像的锐化模型。该模型分为低频和高频处理模块,对于高频子带,提出了一种适用于不同尺度不同方向高频子带的加权方式,并针对其不同方向上的特性,采用一种自适应PCNN模型;对于低频子带,首先将其分解为低秩与稀疏2部分,并根据低秩部分与稀疏部分特点设计相应的融合规则,再采取逆NSST变换得到融合图像。实验在GeoEye,QuickBird与Pléiades数据集上进行,并针对高频信息多尺度加权模块设计了消融实验,相比于次优模型,峰值信噪比(peak signal-to-noise ratio,PSNR)值分别提高了约1 dB,1.6 dB和2.2 dB。实验结果表明,该模型在指标评估中优于其他算法,并有效解决高频信息提取困难问题。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马飞
孙陆鹏
杨飞霞
徐光宪
关键词 全色锐化非下采样剪切波变换多尺度加权脉冲耦合神经网络低秩稀疏分解    
Abstract

To address the issue of spatial and spectral information fusion during pansharpening, this study proposed a sharpening model for panchromatic and multispectral images based on the multiscale weighted pulse-coupled neural network (PCNN) and low-rank and sparse decomposition in the non-subsampled shearlet transform (NSST) domain. The sharpening model consists of low- and high-frequency processing modules. For high-frequency subbands, a method for weighting high-frequency subbands in various scales and directions was proposed, accompanied by an adaptive PCNN model tailored to their characteristics in different directions. In contrast, low-frequency subbands were decomposed into low-rank and sparse parts, with corresponding fusion rules created according to their characteristics. The fused image was then obtained through inverse NSST. The experiments on the sharpening model were conducted using GeoEye,QuickBird, and Pléiades datasets. Moreover, an ablation experiment was designed for the multiscale weighting module for high-frequency information. Compared to suboptimal models, the sharpening model in this study increased the peak signal-to-noise ratio (PSNR) value by approximately 1 dB, 1.6 dB, and 2.2 dB, respectively. The experimental results demonstrate that the sharpening model outperformed other algorithms in index assessment, effectively resolving the challenge of extracting high-frequency information.

Key wordspansharpening    non-subsampled shearlet transform    multiscale weighting    pulse-coupled neural network    low-rank and sparse decomposition
收稿日期: 2023-12-07      出版日期: 2025-07-01
ZTFLH:  TP79  
基金资助:2023年辽宁省自然科学基金计划面上项目“基于图神经网络的高光谱图像分辨率增强方法研究”(2023-MS-314);辽宁省教育厅科学研究经费项目面上项目“高光谱遥感图像超分辨率与地物识别应用研究”(LJKZ0357)
通讯作者: 孙陆鹏(2000-),男,硕士研究生,主要从事遥感图像融合方面的研究。Email: sun916966324@gmail.com
作者简介: 马飞(1978-),男,副教授,主要从事高光谱图像处理、雷达信号处理和凸优化方面的研究。Email: femircom@gmail.com
引用本文:   
马飞, 孙陆鹏, 杨飞霞, 徐光宪. 基于变换域多尺度加权神经网络的全色锐化[J]. 自然资源遥感, 2025, 37(3): 76-84.
MA Fei, SUN Lupeng, YANG Feixia, XU Guangxian. Pansharpening based on the multiscale weighted neural network in the transform domain. Remote Sensing for Natural Resources, 2025, 37(3): 76-84.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gyzyyg.2023379      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/76
Fig.1  二级NSST分解示意图
Fig.2  本文算法流程图
Fig.3  GeoEye数据集全色锐化结果
算法 性能指标
PSNR/dB CC UIQI ERGAS SAM RASE RMSE
HPF 38.634 7 0.954 1 0.953 4 1.214 9 0.018 8 4.890 9 3.434 8
DGIF 40.735 7 0.960 3 0.959 3 1.049 2 0.030 6 4.980 0 3.497 3
GF 42.096 4 0.976 7 0.976 3 0.785 6 0.018 3 3.543 6 2.488 6
STEM 40.906 9 0.968 4 0.965 7 1.047 0 0.025 9 4.883 8 3.429 7
PNNet 42.907 1 0.981 8 0.981 3 0.757 7 0.018 0 3.120 5 2.191 4
本文算法 43.848 2 0.984 9 0.984 3 0.684 2 0.017 0 2.868 1 2.014 2
Tab.1  GeoEye数据集上的融合结果质量评价指标
Fig.4  QuickBird数据集全色锐化结果
算法 性能指标
PSNR/dB CC UIQI ERGAS SAM RASE RMSE
HPF 25.586 4 0.795 9 0.793 9 6.994 3 0.111 7 26.044 9 14.517 1
DGIF 26.588 3 0.832 0 0.825 4 6.145 2 0.111 3 23.081 5 12.865 3
GF 26.603 2 0.826 9 0.823 6 6.441 5 0.109 9 23.941 7 13.344 8
STEM 26.208 5 0.839 1 0.837 2 6.355 9 0.117 5 24.812 8 13.830 3
PNNet 26.181 1 0.860 0 0.850 2 5.728 1 0.113 3 25.632 7 14.287 3
本文算法 28.130 9 0.878 6 0.862 3 5.0800 0.097 2 20.538 3 11.447 8
Tab.2  QuickBird数据集上的融合结果质量评价指标
Fig.5  Pléiades数据集全色锐化结果
算法 性能指标
PSNR/dB CC UIQI ERGAS SAM RASE RMSE
HPF 24.065 9 0.964 0 0.963 3 2.419 9 0.033 9 11.231 8 22.214 3
DGIF 24.727 8 0.964 8 0.964 1 2.240 0 0.054 4 10.991 5 21.739 1
GF 25.186 6 0.962 8 0.961 3 1.845 7 0.023 2 7.795 7 15.418 4
STEM 23.551 1 0.959 1 0.958 1 2.436 5 0.037 3 11.244 2 22.238 8
PNNet 27.351 8 0.980 2 0.978 9 2.015 4 0.045 8 9.964 9 19.708 7
本文算法 29.570 4 0.986 0 0.985 9 1.136 5 0.023 5 4.940 7 9.771 8
Tab.3  Pléiades数据集上的融合结果质量评价指标
算法 耗时/s
GeoEye QuickBird Pléiades
HPF 0.624 1 0.748 4 0.587 3
DGIF 2.364 2 4.596 3 2.113 6
GF 2.012 3 4.218 2 2.423 7
STEM 16.425 2 18.743 9 15.256 2
PNNet 6.236 4 7.240 6 5.254 5
本文算法 15.215 1 20.484 6 13.728 1
Tab.4  不同数据集下不同算法耗时结果
数据集 权重模块 PSNR↑/dB CC RASE
GeoEye 43.848 2 0.984 9 2.868 1
× 43.732 8 0.984 5 2.902 9
Quick
Bird
28.130 9 0.868 6 20.538 3
× 28.091 1 0.877 9 20.630 5
Pléiades 29.570 4 0.986 0 4.940 7
× 29.467 4 0.985 9 5.012 3
Tab.5  在3组数据集上的消融实验结果
[1] 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
Liu W J, Gao J K, Qu H C, et al. Ship detection based on multiscale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3):97-106.doi:10.6046/zrzyyg2020372.
[2] Zhong S, Zhang Y, Chen Y, et al. Combining component substitution and multiresolution analysis:A novel generalized BDSD pansharpening algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6):2867-2875.
[3] Ghassemian H. A review of remote sensing image fusion methods[J]. Information Fusion, 2016,32:75-89.
[4] Meng X, Shen H, Li H, et al. Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis:Practical discussion and challenges[J]. Information Fusion, 2019,46:102-113.
[5] Zhang K, Zhang F, Wan W, et al. Panchromatic and multispectral image fusion for remote sensing and earth observation:Concepts,taxonomy,literaturereview,evaluation methodologies and challenges ahead[J]. Information Fusion, 2023,93:227-242.
[6] Yuan Q, Wei Y, Meng X, et al. A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3):978-989.
[7] Masi G, Cozzolino D, Verdoliva L, et al. Pansharpening by convolutional neural networks[J]. Remote Sensing, 2016, 8(7):594.
[8] Scarpa G, Vitale S, Cozzolino D. Target-adaptive CNN-based pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9):5443-5457.
[9] Jin C, Deng L J, Huang T Z, et al. Laplacian pyramid networks:A new approach for multispectral pansharpening[J]. Information Fusion, 2022,78:158-170.
[10] Lei D, Chen P, Zhang L, et al. MCANet:A multidimensional channel attention residual neural network for pansharpening[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60:1-16.
[11] Su X, Li J, Hua Z. Attention-based and staged iterative networks for pansharpening of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022,60:1-21.
[12] 张杰, 王恒友, 霍连志, 等. 基于特征增强和Three-stream Transformer的高光谱遥感图像全色锐化[J/OL]. 自然资源遥感, 2024, (2024-12-11). https://link.cnki.net/urlid/10.1759.P.20241211.0942.012.
Zhang J, Wang H Y, Huo L Z, et al. Pansharpening of hyperspectral remote sensing images based on feature enhancement and three-stream transformer[J/OL]. Remote Sensing for Natural Resources, 2024, (2024-12-11). https://link.cnki.net/urlid/10.1759.P.20241211.0942.012.
[13] Yin M, Liu W, Zhao X, et al. A novel image fusion algorithm based on nonsubsampledshearlet transform[J]. Optik, 2014, 125(10):2274-2282.
[14] 徐欣钰, 李小军, 赵鹤婷, 等. NSCT和PCNN 相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3):64-70.doi:10.6046/zrzyyg.2022159.
Xu X Y, Li X J, Zhao H T, et al. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sen-sing for Natural Resources, 2023, 35 (3):64-70.doi:10.6046/zrzyyg.2022159.
[15] Johnson J L. Pulse-coupled neural nets:Translation,rotation,scale,distortion,and intensity signal invariance for images[J]. Applied Optics, 1994, 33(26):6239-6253.
doi: 10.1364/AO.33.006239 pmid: 20936043
[16] Wang X, Bai S, Li Z, et al. The PAN and MS image pansharpening algorithm based on adaptive neural network and sparse representation in the NSST domain[J]. IEEE Access, 2019,7:52508-52521.
[17] 成丽波, 陈鹏宇, 李喆, 等. 基于剪切波变换和拟合优度检验的遥感图像去噪[J]. 吉林大学学报(理学版), 2023, 61(5):1187-1194.
Cheng L B, Chen P Y, Li Z, et al. Remote sensing image denoising based on shearlet transform and goodness of fit test[J]. Journal of Jilin University (Science Edition), 2023, 61(5):1187-1194.
[18] Chen Y, Park S K, Ma Y, et al. A new automatic parameter setting method of a simplified PCNN for image segmentation[J]. IEEE Transactions on Neural Networks, 2011, 22(6):880-892.
doi: 10.1109/TNN.2011.2128880 pmid: 21550882
[19] Gao Q, Zhang P, Xia W, et al. Enhanced tensor RPCA and its application[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(6):2133-2140.
[20] Garzelli A, Capobianco L, Alparone L, et al. Hyperspectralpansharpening based on modulation of pixel spectra[C]// 2010 2nd Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing.IEEE 2nd Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing. 2010:1-4.
[21] Jian L, Yang X, Wu W, et al. Pansharpening using a guided image filter based on dual-scale detail extraction[J]. Journal of Ambient Intelligence and Humanized Computing, 2018,1-15.
[22] Li Q, Yang X, Wu W, et al. Pansharpening multispectral remote-sensing images with guided filter for monitoring impact of human behavior on environment[J]. Concurrency and Computation:Practice and Experience, 2021, 33(4):e5074.
[23] Tao J, Song C, Song D, et al. Pan-sharpening framework based on multiscale entropy level matching and its application[J]. IEEE Transactions on Geoscience and Remote Sensing. 2022,60:1-21.
[1] 徐欣钰, 李小军, 盖钧飞, 李轶鲲. 结合NSCT变换和引导滤波的多光谱图像全色锐化算法[J]. 自然资源遥感, 2025, 37(1): 24-30.
[2] 郭彭浩, 邱建林, 赵淑男. 高频域多深度空洞网络的遥感图像全色锐化算法[J]. 自然资源遥感, 2024, 36(3): 146-153.
[3] 赵鹤婷, 李小军, 徐欣钰, 盖钧飞. 基于ICM的高光谱图像自适应全色锐化算法[J]. 自然资源遥感, 2024, 36(2): 97-104.
[4] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发