Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (3): 85-94    DOI: 10.6046/zrzyyg.2023388
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
一种结合孪生倒残差与自注意力增强的遥感影像变化检测方法
张荞1(), 曹志成1, 沈洋2, 汪宙峰1, 王成武1, 许嘉欣1
1.西南石油大学地球科学与技术学院,成都 610500
2.自然资源部第三大地测量队,成都 610100
A method combining the siamese inverted residual structure with self-attention enhancement for change detection based on remote sensing images
ZHANG Qiao1(), CAO Zhicheng1, SHEN Yang2, WANG Zhoufeng1, WANG Chengwu1, XU Jiaxin1
1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
2. The Third Geodetic Surveying Brigade of MNR, Chengdu 610100, China
全文: PDF(6137 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

遥感影像变化检测在国土调查更新、城市发展监测与规划等方面中具有重大的应用需求。针对遥感影像变化检测在实际应用中面临的挑战,文章提出了一种结合孪生倒残差结构与自注意力增强的轻量级变化检测方法。该方法通过引入孪生的改进型倒残差结构替代传统卷积神经网络结构作为骨干网络,充分提取特征信息且大幅降低网络复杂度,使用自注意力增强模块提升网络的全局信息关注能力,在损失函数中加入边缘权重精准优化提取结果的细节,利用多层次的跳接残差连接充分融合全局与局部特征。在公开和自制的遥感影像变化检测数据集上对该方法分别进行性能测试,结果表明,所提方法相较于其他变化检测方法,在不降低检测精度的前提下大幅减少了网络参数量和计算量,实现了遥感影像变化检测模型轻量化。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张荞
曹志成
沈洋
汪宙峰
王成武
许嘉欣
关键词 遥感影像变化检测改进型倒残差自注意力增强模块轻量化模型    
Abstract

Change detection based on remote sensing images holds significant application potential in land source survey updating, and urban development monitoring and planning. Concerning the challenges of change detection based on remote sensing images in practical applications, this study proposed a lightweight change detection method combining the siameseinverted residual structure with self-attention enhancement. Instead of the traditional convolutional neural network structure, the siamese improved inverted residual structure was used as the backbone network to fully extract the feature information and significantly reduce the network complexity. The self-attention enhancement module was employed to improve the network's ability to pay attention to global information. Edge weights were added to the loss function to precisely optimize the details of the extraction results. The multilevel hopping residual connections were applied to fully integrate the global and local features. Finally, the performance of the proposed method was tested on the public and prepared datasets of remote sensing images for change detection, respectively. The results indicate that compared to other change detection methods, the proposed method significantly reduced network parameters and computational complexity while maintaining the detection accuracy, contributing to lightweight models of change detection based on remote sensing images.

Key wordsremote sensing image    change detection    modified inverted residual structure    self-attention enhancement module    lightweight model
收稿日期: 2023-12-15      出版日期: 2025-07-01
ZTFLH:  TP79  
基金资助:四川省科技计划项目“基于时空大数据的地下生命线安全智能感知与性态演化关键技术研究”(2023YFS0406);自然资源部第三大地测量队科技项目“多源遥感影像人工智能解译技术及资源管理研究”(2022KJ01);四川省测绘地理信息局科技项目“基础地理实体构建与可视化表达关键技术研究”(2023KJ001)
作者简介: 张荞(1985-),男,博士,副教授,主要从事遥感图像处理与分析、自然资源调查与监测研究。Email: swpuqzh@swpu.edu.cn
引用本文:   
张荞, 曹志成, 沈洋, 汪宙峰, 王成武, 许嘉欣. 一种结合孪生倒残差与自注意力增强的遥感影像变化检测方法[J]. 自然资源遥感, 2025, 37(3): 85-94.
ZHANG Qiao, CAO Zhicheng, SHEN Yang, WANG Zhoufeng, WANG Chengwu, XU Jiaxin. A method combining the siamese inverted residual structure with self-attention enhancement for change detection based on remote sensing images. Remote Sensing for Natural Resources, 2025, 37(3): 85-94.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2023388      或      https://www.gtzyyg.com/CN/Y2025/V37/I3/85
Fig.1  Siam-MViT模型总体框架
Fig.2  改进型倒残差模块
Fig.3  自注意力增强模块
Fig.4  轻量化Transformer原理
Fig.5  提取正样本边缘
Fig.6  数据增强
模型 LEVIR-CD SAMPLE-CD
OA Precision Recall F1 IoU OA Precision Recall F1 IoU
FC-EF 98.39 86.91 80.17 83.40 71.35 88.54 72.53 64.85 59.34 48.63
FC-Siam-diff 98.67 89.53 83.31 86.31 75.92 86.72 64.89 66.92 63.81 52.26
FC-Siam-conc 98.49 91.99 76.77 83.69 71.96 87.19 68.38 68.31 61.48 54.11
BIT 98.92 89.24 89.37 89.31 80.68 90.65 83.15 81.51 82.29 71.74
Changeformer 99.04 92.05 88.80 90.40 82.48 89.25 80.86 77.51 79.02 67.78
Siam-MViT 98.96 91.11 92.16 91.04 84.35 91.15 83.98 82.80 83.37 73.13
Tab.1  不同模型在LEVIR-CD和SAMPLE-CD数据集上的精度对比
序号 前时相 后时相 标签 FC-EF FC-Siam-diff FC-Siam-conc BIT Changefomer Siam-MViT
1
2
3
4
5
6
图例
Tab.2  LEVIR-CD数据集的变化检测可视化结果
序号 前时相 后时相 标签 FC-EF FC-Siam-diff FC-Siam-conc BIT Changefomer Siam-MViT
1
2
3
4
5
6
图例
Tab.3  SAMPLE-CD数据集的变化检测可视化结果
Fig.7  Siam-MViT与Changeformer在SAMPLE-CD数据集上大尺度预测结果对比
模型 Param/106 GFLOPS 预测用时/
(ms/组)
FC-EF 1.35 3.58 6.37
FC-Siam-diff 1.35 4.73 8.01
FC-Siam-conc 1.55 5.33 7.84
BIT 12.41 10.65 16.32
Changeformer 41.03 202.79 28.97
Siam-MViT 0.82 3.36 5.92
Tab.4  模型计算效率统计
模型 特征强化模块 改进型倒残差模块 边缘损失
函数
LEVIR-CD
F1/%
SAMPLE-CD
F1/%
Param/106 GFLOPS
Siam-MViT 91.04 83.37 0.82 3.36
A × 90.40 81.34 0.82 3.36
B × × 89.26 78.63 0.58 1.70
C × × × 88.63 78.36 0.15 1.03
Tab.5  消融实验结果
[1] 李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版), 2003, 28(s1):7-12.
Li D R. Change detection using remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(s1):7-12.
[2] Huang F H, Yu Y, Feng T H. Automatic building change image quality assessment in high resolution remote sensing based on deep learning[J]. Journal of Visual Communication and Image Representation, 2019,63:102585.
[3] Bruzzone L, Bovolo F. A novel framework for the design of change-detection systems for very-high-resolution remote sensing images[J]. Proceedings of the IEEE, 2013, 101(3):609-630.
[4] 眭海刚, 冯文卿, 李文卓, 等. 多时相遥感影像变化检测方法综述[J]. 武汉大学学报(信息科学版), 2018, 43(12):1885-1898.
Sui H G, Feng W Q, Li W Z, et al. Review of change detection methods for multi-temporal remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12):1885-1898.
[5] 任秋如, 杨文忠, 汪传建, 等. 遥感影像变化检测综述[J]. 计算机应用, 2021, 41(8):2294-2305.
doi: 10.11772/j.issn.1001-9081.2020101632
Ren Q R, Yang W Z, Wang C J, et al. Review of remote sensing image change detection[J]. Journal of Computer Applications, 2021, 41(8):2294-2305.
doi: 10.11772/j.issn.1001-9081.2020101632
[6] Yool S R, Rogan J. Mapping fire-induced vegetation depletion in the PeloncilloMountains,Arizona and New Mexico[J]. International Journal of Remote Sensing, 2001, 22(16):3101-3121.
[7] Chen J, Chen X, Cui X, et al. Change vector analysis in posterior probability space:A new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):317-321.
[8] Ridd M K, Liu J. A comparison of four algorithms for change detection in an urban environment[J]. Remote Sensing of Environment, 1998, 63(2):95-100.
[9] Nielsen A A. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2007, 16(2):463-478.
[10] Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images:From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,80:91-106.
[11] 刘春亭, 冯权泷, 刘建涛, 等. DeepLabv3+语义分割模型的济南市防尘绿网提取及时空变化分析[J]. 遥感学报, 2022, 26(12):2518-2530.
Liu C T, Feng Q L, Liu J T, et al. Urban green plastic cover extraction and spatial pattern changes in Jinan City based on DeepLabv3+semantic segmentation model[J]. National Remote Sensing Bulletin, 2022, 26(12):2518-2530.
[12] 沙苗苗, 李宇, 李安. 改进Faster R-CNN的遥感图像多尺度飞机目标检测[J]. 遥感学报, 2022, 26(8):1624-1635.
Sha M M, Li Y, Li A. Multiscale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN[J]. National Remote Sensing Bulletin, 2022, 26(8):1624-1635.
[13] 郑宗生, 刘海霞, 王振华, 等. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2):105-111.doi: 10.6046/zrzyyg.2022100.
Zheng Z S, Liu H X, Wang Z H, et al. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2):105-111.doi: 10.6046/zrzyyg.2022100.
[14] Daudt C R, LeSaux B, Boulch A. Fully convolutional Siamese networks for change detection. 2018 25th IEEE International Conference on Image Processing (ICIP).Athens,Greece.IEEE, 2018:4063-4067.
[15] 袁洲, 郭海涛, 卢俊, 等. 融合UNet++网络和注意力机制的高分辨率遥感影像变化检测算法[J]. 测绘科学技术学报, 2021, 38(2):155-159.
Yuan Z, Guo H T, Lu J, et al. High-resolution remote sensing image change detection technology based on UNet++ and attention mechanism[J]. Journal of Geomatics Science and Technology, 2021, 38(2):155-159.
[16] 吴纹辉, 慎利, 董新丰, 等. 面向高分辨率遥感影像建筑物变化检测的边缘感知网络[J]. 地理与地理信息科学, 2021, 37(3):21-28.
Wu W H, Shen L, Dong X F, et al. Edge sensing network for building change detection in high resolution remote sensing images[J]. Geography and Geo-Information Science, 2021, 37(3):21-28.
[17] Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10):1662.
[18] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.Long Beach,California,USA.ACM, 2017:6000-6010.
[19] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words:Transformers for image recognition at scale[EB/OL]. arXiv, 2010. http://arxiv.org/abs/2010.11929.
[20] Chen H, Qi Z, Shi Z. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 1802,60:5607514.
[21] Bandara W G C, Patel V M. A Transformer-based Siamese network for change detection[C]// IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium.Kuala Lumpur,Malaysia. IEEE, 2022:207-210.
[22] 田永林, 王雨桐, 王建功, 等. 视觉Transformer研究的关键问题:现状及展望[J]. 自动化学报, 2022, 48(4):957-979.
Tian Y L, Wang Y T, Wang J G, et al. Key problems and progress of vision transformers:The state of the art and prospects[J]. ActaAutomatica Sinica, 2022, 48(4):957-979.
[23] 薛白, 王懿哲, 刘书含, 等. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1):61-66.doi: 10.6046/zrzyyg.2021122.
Xue B, Wang Y Z, Liu S H, et al. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1):61-66.doi: 10.6046/zrzyyg.2021122.
[24] Zhang X, Zhou X, Lin M, et al. ShuffleNet:An extremely efficient convolutional neural network for mobile devices[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE, 2018:6848-6856.
[25] Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2:Practical guidelines for efficient CNN architecture design[C]// Computer Vision-ECCV 2018:15th European Conference,Munich,Germany,2018,Proceedings,Part XIV.ACM, 2018:122-138.
[26] Sandler M, Howard A, Zhu M, et al. MobileNetV2:Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA.IEEE, 2018:4510-4520.
[27] Tan M, Le Q V. EfficientNet:Rethinking model scaling for convolutional neural networks[J/OL]. arXiv, 2020. http://arxiv.org/abs/1905.11946v5.
[28] Mehta S, Rastegari M. MobileViT:Light-weight,general-purpose,and mobile-friendly vision transformer[J/OL]. arXiv, 2021. http://arxiv,2022.org/abs/2110.02178.
[29] Chen J, Yuan Z, Peng J, et al. DASNet:Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021,14:1194-1206.
[30] Ghiasi G, Cui Y, Srinivas A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville,TN,USA.IEEE, 2021:2917-2927.
[31] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[32] 王振庆, 周艺, 王世新, 等. IEU-Net高分辨率遥感影像房屋建筑物提取[J]. 遥感学报, 2021, 25(11):2245-2254.
Wang Z Q, Zhou Y, Wang S X, et al. House building extraction from high-resolution remote sensing images based on IEU-Net[J]. National Remote Sensing Bulletin, 2021, 25(11):2245-2254.
[33] 王子浩, 李轶鲲, 李小军, 等. 基于空间模糊C均值聚类和贝叶斯网络的抗噪声遥感图像变化检测[J]. 自然资源遥感, 2023, 35(4):96-104.doi: 10.6046/zrzyyg.2022260.
Wang Z H, Li Y K, Li X J, et al. Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2023, 35(4): 96-104. doi: 10.6046/zrzyyg.2022260.
[1] 庞敏. 国产多源卫片图斑智能提取平台研究与应用[J]. 自然资源遥感, 2025, 37(2): 148-154.
[2] 邵攀, 管宗胜, 贾付文. 基于宽度学习的非监督SAR影像变化检测[J]. 自然资源遥感, 2025, 37(2): 19-29.
[3] 聂诗音, 刘严松, 李会玲, 薛凯伦, 沈杜衡, 何博宇. 基于图谱耦合的高寒湿地土地类型识别与分类[J]. 自然资源遥感, 2025, 37(2): 204-211.
[4] 陈佳雪, 肖东升, 陈虹宇. 一种边界引导与跨尺度信息交互网络用于遥感影像水体提取[J]. 自然资源遥感, 2025, 37(1): 15-23.
[5] 王体鑫, 杨金中, 邢宇, 王开建. 基于ArcPy与图面优化的国家级自然保护地遥感监测成果自动制图方法[J]. 自然资源遥感, 2025, 37(1): 252-259.
[6] 曲海成, 梁旭. 融合混合注意力机制与多尺度特征增强的高分影像建筑物提取[J]. 自然资源遥感, 2024, 36(4): 107-116.
[7] 赵金玲, 黄健, 梁梓君, 赵学丹, 靳涛, 葛行行, 魏晓燕, 邵远征. 基于BDANet的地震灾害建筑物损毁评估[J]. 自然资源遥感, 2024, 36(4): 193-200.
[8] 邰佳怡, 慎利, 乔文凡, 周吾珍. 不同上下文比例对损毁建筑遥感场景图片样本集构建的影响[J]. 自然资源遥感, 2024, 36(3): 154-162.
[9] 于淼, 荆虹波, 王翔, 李兴久. 基于深度特征的多方向目标检测研究[J]. 自然资源遥感, 2024, 36(3): 267-271.
[10] 赵彬如, 牛思文, 王力彦, 杨晓彤, 焦红波, 王子珂. 面向海岛海岸带区域的高分遥感影像智能化色彩增强方法[J]. 自然资源遥感, 2024, 36(2): 70-79.
[11] 马惠, 刘波, 杜世宏. 多任务学习孪生网络的遥感影像多类变化检测[J]. 自然资源遥感, 2024, 36(1): 77-85.
[12] 陈笛, 彭秋志, 黄培依, 刘雅璇. 采用注意力机制与改进YOLOv5的光伏用地检测[J]. 自然资源遥感, 2023, 35(4): 90-95.
[13] 王子浩, 李轶鲲, 李小军, 杨树文. 基于空间模糊C均值聚类和贝叶斯网络的抗噪声遥感图像变化检测[J]. 自然资源遥感, 2023, 35(4): 96-104.
[14] 刘涵薇, 陈富龙, 廖亚奥. 明长城(北京段)遥感动态监测与影响驱动分析[J]. 自然资源遥感, 2023, 35(4): 255-263.
[15] 董婷, 符潍奇, 邵攀, 高利鹏, 武昌东. 基于改进全连接条件随机场的SAR影像变化检测[J]. 自然资源遥感, 2023, 35(3): 134-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发