Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 205-212    DOI: 10.6046/zrzyyg.2021427
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析
代云豪1(), 管瑶1, 冯春涌2, 蒋敏1, 贺兴宏1()
1.塔里木大学水利与建筑工程学院,阿拉尔 843300
2.北京师范大学地理科学学部,北京 100088
Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling
DAI Yunhao1(), GUAN Yao1, FENG Chunyong2, JIANG Min1, HE Xinghong1()
1. College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China
2. Department of Geographical Sciences, Beijing Normal University, Beijing 100088, China
全文: PDF(4120 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

为了探究反演新疆维吾尔自治区阿拉尔垦区土壤盐渍化最优遥感盐分监测指数模型,以Landsat8 OLI遥感影像和野外实测数据为基础,通过盐分指数(salinity index,SI)、归一化植被指数(normalized difference vegetation index,NDVI)、修改型土壤调节植被指数(modified soil - adjusted vegetation index,MSAVI)、地表反照率(Albedo)构建遥感盐分监测指数模型(salinization detection index,SDI),提取阿拉尔垦区土壤盐渍化信息并验证模型精度,对比分析得出最优遥感盐分监测指数模型。结果表明: 4类遥感盐分监测指数模型中SDI1(SI-NDVI),SDI2(SI-MSAVI),SDI3(SI-Albedo)和SDI4(Albedo-MSAVI)总体分类精度为83.45%,69.78%,53.23%和71.94%; SDI1模型最适合反演阿拉尔垦区土壤盐渍化程度,SDI2和SDI4模型对阿拉尔垦区土壤盐渍化监测有一定参考意义; 利用SDI1模型反演阿拉尔垦区土壤盐渍化分布,垦区以非盐渍土和轻度盐渍土为主,重度盐渍土和盐土主要分布在垦区的东北和东南地区。由SI和NDVI构建SDI1对阿拉尔垦区土壤盐渍化信息提取精度较高,可作为反演垦区土壤盐渍化的遥感盐分监测指数模型,可为垦区土壤盐渍化治理和防治提供有效的技术参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
代云豪
管瑶
冯春涌
蒋敏
贺兴宏
关键词 光谱指数阿拉尔垦区土壤盐渍化遥感盐分监测指数模型    
Abstract

This study aims to explore the optimal remote sensing salinization detection index (SDI) model for the inversion of soil salinization in the Alar reclamation area. Based on Landsat8 OLI remote sensing images and field measured data, this study built the remote sensing SDI models using the salinity index (SI), the normalized difference vegetation index (NDVI), the modified soil adjusted vegetation index (MSAVI), and the surface albedo. Then, using these models, this study extracted the soil salinization information on the Alar reclamation area and verified the model precision. Finally, this study determined the optimal remote sensing-based SDI model through comparative analysis. The results are as follows. The four types of remote sensing-based SDI models SDI1 (SI-NDVI), SDI2 (SI-MSAVI), SDI3 (SI-Albedo), and SDI4 (Albedo-MSAVI)had general classification precision of 83.45%, 69.78%, 53.23%, and 71.94%, respectively. Model SDI1 was the most suitable for the inversion of the degree of soil salinization in the Alar reclamation area. Models SDI2 and SDI4 can be utilized as a reference for soil salinization monitoring of the Alar reclamation area. As revealed by the inversion results of the SDI model, the reclamation area is dominated by non-saline and lightly saline soils, with heavily saline soil and saline soil primarily distributed in the northeast and southeast. Model SDI1 established based on SI and NDVI has high accuracy in extracting the soil salinization information of the Alar reclamation area and can be used as the remote sensing-based SDI model for the inversion of soil salinization in reclamation areas. This study can provide an effective technical reference for the control and prevention of soil salinization.

Key wordsspectral index    Alar reclamation area    soil salinization    remote sensing salinity detection index model
收稿日期: 2021-12-06      出版日期: 2023-03-20
ZTFLH:  TP79  
  S153  
基金资助:农业部作物需水与调控重点实验室开放课题“南疆极端干旱区不同土质点源滴灌入渗及水盐运移规律研究”(FIRI2019-03-0202);兵团重大项目子课题“新疆空中水资源利用研究与示范”(2017AA002);兵团重点产业项目“南疆生态农田水资源多维调控模式研究”(2021DB017);中国农业大学塔里木大学联合基金“南疆极端干旱区残余盐土滴灌水盐运移原理及水分高效利用研究”(2019TC157);塔里木大学研究生科研创新项目“基于3S技术对塔里木灌区的土壤盐渍化时空动态预测分析研究”(TDGRI202042)
通讯作者: 贺兴宏(1981-),男,教授,主要研究方向为水资源高效利用。Email: hexinghong0611@163.com
作者简介: 代云豪(1996-),男,硕士研究生,主要研究方向为3S技术在农业工程中的应用。Email: 917473073@qq.com
引用本文:   
代云豪, 管瑶, 冯春涌, 蒋敏, 贺兴宏. 基于光谱指数建模的阿拉尔垦区土壤盐渍化信息提取与分析[J]. 自然资源遥感, 2023, 35(1): 205-212.
DAI Yunhao, GUAN Yao, FENG Chunyong, JIANG Min, HE Xinghong. Extraction and analysis of soil salinization information of Alar reclamation area based on spectral index modeling. Remote Sensing for Natural Resources, 2023, 35(1): 205-212.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021427      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/205
Fig.1  阿拉尔垦区概况及采样点分布
光谱指数 公式 参考文献
NDVI N D V I = N I R - R N I R + R [18]
Albedo Albedo=0.356B+0.130R+0.373NIR+0.085SWIR1+0.072SWIR2-0.0018 [20]
MSAVI M S A V I = ( 2 N I R + 1 ) - ( 2 N I R - 1 ) 2 - 8 ( N I R - R ) 2 [20]
SI S I = B · R [18]
SDI1模型(SI-NDVI) SDI1= ( N D V I - 1 ) 2 + S I 2 [18]
SDI2模型(SI-MSAVI) SDI2= ( M S A V I - 1 ) 2 + S I 2 [19]
SDI3模型(SI-Albedo) SDI3= A l b e d o 2 + S I 2 [28]
SDI4模型(Albedo-MSAVI) SDI4= ( 1 - A l b e d o ) 2 + M S A V I 2 [20???????][28]
Tab.1  遥感光谱指数及模型
Fig.2  二维散点图
二维散
点图
光谱指数拟合公式 拟合度
SI-
NDVI
线性: Y=0.942 6-3.063X
二次: Y=1.165 1-6.570X+9.859 7X2
几何: Y=-2.918X0.2594+2.201 5
双曲: Y=1.0/(0.425 2+14.226X)
对数: Y=-0.670 2-1.565lgX-0.297 7lg(X)2
R2=0.867 7
R2=0.929 6
R2=0.915 3
R2=0.872 4

R2=0.916 5
SI-
MSAVI
线性: Y=1.053 5-3.087X
二次: Y=1.198 9-5.384X+6.475 4X2
几何: —
双曲: Y=1.0/(0.550 6+9.570 0X)
对数: Y=-0.834 3-2.241lgX-0.677 6lgX2

R2=0.888 6
R2=0.914 3

R2=0.859 0
R2=0.909 7
SI-
Albedo
线性: Y=0.282 8+0.185 9X
二次: Y=0.363 2-1.085X+3.583 5X2
几何: —
双曲: Y=1.0/(3.556 1-2.169X)
对数: —
R2=0.097 5
R2=0.336 1

R2=0.115 3
Albedo-
MSAVI
线性: Y=0.677 6-0.237 9X
二次: Y=-0.800 5+9.844 8X-16.65X2
几何: Y=0.254 5X-0.064 5+0.3284
双曲: Y=1.0/(1.500 1+0.504 1X)
对数: Y=-1.022-6.013lgX-5.416lgX2

R2=0.001 9
R2=0.050 5
R2=0.000 2
R2=0.001 5
R2=0.033 3
Tab.2  二维散点图模型拟合性
模型 非盐渍土 轻度盐渍土 中度盐渍土 重度盐渍土 盐土
SDI1 <0.27 [0.27,0.46) [0.46,0.67) [0.67,0.85) ≥0.85
SDI2 <0.21 [0.27,0.40) [0.46,0.62) [0.62,0.80) ≥0.80
SDI3 <0.13 [0.13,0.18) [0.18,0.24) [0.24,0.30) ≥0.30
SDI4 >1.09 [0.97,1.09) [0.85,0.97) [0.74,0.85) ≤0.74
Tab.3  阿拉尔垦区土壤盐渍化分类
Fig.3  不同模型下的阿拉尔垦区土壤盐渍化等级分布
模型 样点分
类正确
样点分类错误 总体精
度/%
非盐 轻度 中度 重度 盐土 共计
SDI1 116 10 2 6 3 2 23 83.45
SDI2 97 6 6 16 6 8 42 69.78
SDI3 74 35 3 14 6 7 65 53.23
SDI4 100 3 6 18 6 6 39 71.94
Tab.4  模型样点精度验证
Fig.4  模型与实测电导率拟合
Fig.5  2011、2021年阿拉尔垦区土壤盐渍化等级分布
年份 非盐渍土 轻度盐渍土 中度盐渍土 重度盐渍土 盐土
2011年 906.31 524.37 519.46 538.39 787.72
2021年 1116.39 606.86 410.34 506.88 830.03
Tab.5  2011年、2021年阿拉尔垦区土壤盐渍化面积统计
[1] 麦麦提吐尔逊·艾则孜. 绿洲土壤盐渍化及水盐调控[M]. 北京: 北京理工大学出版社, 2016.
Aizezi M. Soil salinization and water salt regulation in oasis[M]. Beijing: Beijing University of Technology Press, 2016.
[2] 买买提·沙吾提, 尼格拉·塔什甫拉提, 丁建丽, 等. 干旱区土壤盐渍化遥感监测及评价研究[M]. 北京: 北京理工大学出版社, 2018.
Shatiwu M, Tashenpulati N, Ding J L, et al. Remote sensing monitoring and evaluation of soil salinization in arid areas[M]. Beijing: Beijing University of Technology Press, 2018.
[3] 贾萍萍, 尚天浩, 张俊华, 等. 利用多源光谱信息反演宁夏银北地区干湿季土壤含盐量[J]. 农业工程学报, 2020, 36(17):125-134.
Jia P P, Shang T H, Zhang J H, et al. Inversion of soil salinity in dry and wet seasons based on multi-source spectral data inYinbei area of Ningxia,China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17):125-134.
[4] 虎胆·吐马尔白, 赵永成, 马合木江·艾合买提, 等. 北疆常年膜下滴灌棉田土壤盐分积累特征研究[J]. 灌溉排水学报, 2016, 35(1):1-5.
Tumaerbai H, Zhao Y C, Aihemaiti M, et al. Study on characteristics of cotton field soil salt accumulation under perennialmulched drip irrigation in Northern Xinjiang[J]. Journal of Irrigation and Drainage, 2016, 35(1):1-5.
[5] 吴亚坤, 刘广明, 苏里坦, 等. 多源数据的区域土壤盐渍化精确评估[J]. 光谱学与光谱分析, 2018, 38(11):3528-3533.
Wu Y K, Liu G M, Shu L T, et al. Accurate evaluation of regional soil salinization using multi-source data[J]. Spectroscopy and Spectral Analysis, 2018, 38(11):3528-3533.
[6] Alqasemi A S, Ibrahim M, Al-Quraishi A M F, et al. Detection and modeling of soil salinity variations in arid lands using remote sensing data[J]. Open Geosciences, 2021, 13(1):443-453.
doi: 10.1515/geo-2020-0244
[7] Sidike A, Zhao S, Wen Y. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 26:156-175.
doi: 10.1016/j.jag.2013.06.002
[8] Wang F, Chen X, Luo G P, et al. Detecting soil salinity with arid fraction integrated index and salinity index in feature space using Landsat TM imagery[J]. Journal of Arid Land, 2013, 5(3):340-353.
doi: 10.1007/s40333-013-0183-x
[9] 哈学萍, 丁建丽, 等. 基于SI-Albedo特征空间的干旱区盐渍化土壤信息提取研究——以克里雅河流域绿洲为例[J]. 土壤学报, 2009, 46(3):381-390.
Ha X P, Ding J L, et al. SI-ALbedo space based extraction of salinization information in arid area[J]. Journal of Soil, 2009, 46(3):381-390.
[10] 陈红艳, 赵庚星, 陈敬春, 等. 基于改进植被指数的黄河口区盐渍土盐分遥感反演[J]. 农业工程学报, 2015, 31(5):107-112,113,114.
Chen H Y, Zhao G X, Chen J C, et al. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):107-112,113,114.
[11] 陈实, 高超, 徐斌, 等. 新疆石河子农区土壤含盐量定量反演及其空间格局分析[J]. 地理研究, 2014, 33(11):2135-2144.
doi: 10.11821/dlyj201411013
Chen S, Gao G, Xu B, et al. Quantitative inversion of soil salinity and analysis of its spatial pattern in agricultural area in Shihezi of Xinjiang[J]. Geographical Research, 2014, 33(11):2135-2144.
doi: 10.11821/dlyj201411013
[12] 丁建丽, 姚远, 王飞. 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014, 34(16):4620-4631.
Ding J L, Yao Y, Wang F. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(16):4620-4631.
[13] 史晓艳, 李维弟, 余露, 等. 玛纳斯河流域农灌区土壤盐渍化遥感定量评价[J]. 灌溉排水学报, 2018, 37(11):69-75,83.
Shi X Y, Li W D, Yu L, et al. Remote sensing quantitative evaluation of soil salinization in agricultural irrigation areas of Manas River Basin[J]. Journal of Irrigation and Drainage, 2018, 37(11):69-75,83.
[14] 丁邦新, 白云岗, 柴仲平, 等. 塔里木河下游绿洲灌区土壤盐渍化特征及季节性变化规律[J]. 水土保持通报, 2020, 40(2):77-84,2.
Ding B X, Bai Y G, Chai Z P, et al. Soil salinization characteristics and its seasonal variation in oasis irrigation district of lower reaches of Tarim River[J]. Bulletin of Soil and Water Conservation, 2020, 40(2):77-84,2.
[15] 杨小虎, 罗艳琴, 杨海昌, 等. 玛纳斯河流域绿洲农田土壤盐分反演及空间分布特征[J]. 干旱区资源与环境, 2021, 35(2):156-161.
Yang X H, Luo Y Q, Yang H C, et al. Soil salinity retrieval and spatial distribution of oasis farmland in Manasi river basin[J]. Journal of Arid Land Resources and Environment, 2021, 35(2):156-161.
[16] 白建铎, 彭杰, 白子金, 等. 干旱区棉田表层土壤盐渍化时空变异研究[J]. 土壤通报, 2021, 52(3):527-534.
Bai J D, Peng J, Bai Z J, et al. Clarifying spatial-temporal variability of surface soil salinization in arid cotton fields[J]. Chinese Journal of Soil Science, 2021, 52(3):527-534.
[17] 陈实, 徐斌, 金云翔, 等. 北疆农区土壤盐渍化遥感监测及其时空特征分析[J]. 地理科学, 2015, 35(12):1607-1615.
doi: 10.13249/j.cnki.sgs.2015.012.1607
Chen S, Xu B, Jin Y X, et al. Remote sensing monitoring and spatial-temporal characteristics analysis of soil salinization in agricultural area of Northern Xinjiang[J]. Science Geographic Science, 2015, 35(12):1607-1615.
[18] 王飞, 丁建丽, 伍漫春. 基于NDVI-SI特征空间的土壤盐渍化遥感模型[J]. 农业工程学报, 2010, 26(8):168-173,8.
Wang F, Ding J L, Wu M C. Remote sensing monitoring models of soil salinization based in NDVI-SI feature space[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(8):168-173,8.
[19] 张添佑, 王玲, 曾攀丽, 等. 基于MSAVI-SI特征空间的玛纳斯河流域灌区土壤盐渍化研究[J]. 干旱区研究, 2016, 33(3):499-505.
Zhang T Y, Wang L, Zeng P L, et al. Soil salinization in the irrigated area of the Manas River Basin based on MSAVI-SI feature space[J]. Arid Zone Research, 2016, 33(3):499-505.
[20] 冯娟, 丁建丽, 魏雯瑜. 基于Albedo-MSAVI特征空间的渭库绿洲土壤盐渍化研究[J]. 中国农村水利水电, 2018(2):147-152.
Feng J, Ding J L, Wei W Y. Remote sensing modeling of soil salinization information in arid areas[J]. Agricultural Research in the Arid Areas, 2018(2):147-152.
[21] 宋奇, 冯春晖, 高琪, 等. 阿拉尔垦区近30年耕地变化及其驱动因子分析[J]. 国土资源遥感, 2021, 33(2):202-212.doi:10.6046/gtzyyg.2020183.
doi: 10.6046/gtzyyg.2020183
Song Q, Feng C H, Gao Q, et al. Change of cultivated land and its driving factors in Alar Reclamation Area in the past thirty years[J]. Remote Sensing for Land and Resources, 2021, 33(2):202-212.doi:10.6046/gtzyyg.2020183.
doi: 10.6046/gtzyyg.2020183
[22] 新疆生产建设兵团年鉴编辑委员会. 兵团年鉴[M]. 新疆: 新疆生产建设兵团年鉴社, 2020.
Editorial Committee of Xinjiang Production and Construction Corps Yearbook. Corps yearbook[M]. Xinjiang: Xinjiang Production and Construction Corps Yearbook Society, 2020.
[23] 莫治新, 柳维扬, 伍维模. 新疆阿拉尔垦区土壤发生特性及系统分类研究[J]. 干旱地区农业研究, 2009, 27(6):40-43,57.
Mo Z X, Liu W Y, Wu W M. Research on the genetic characteristic and taxonomy of soils in Aral irrigated area[J]. Agricultural Research in the Arid Areas, 2009, 27(6):40-43,57.
[24] 卢晶, 张绪教, 叶培盛, 等. 基于SI-MSAVI特征空间的河套灌区盐碱化遥感监测研究[J]. 国土资源遥感, 2020, 32(1):169-175.doi:10.6046/gtzyyg.2020.01.23.
doi: 10.6046/gtzyyg.2020.01.23
Lu J, Zhang X J, Ye P S, et al. Remote sensing monitoring of salinization in Hetao irrigation district based on SI-MSAVI feature space[J]. Remote Sensing for Land and Resources, 2020, 32(1):169-175.doi:10.6046/gtzyyg.2020.01.23.
doi: 10.6046/gtzyyg.2020.01.23
[25] 吴霞, 王长军, 樊丽琴, 等. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2):124-133.doi:10.6046/gtzyyg.2020210.
doi: 10.6046/gtzyyg.2020210
Wu X, Wang C J, Fan L Q, et al. An applicability analysis of salinization evaluation index based on multispectral remote sensing to soil salinity prediction in Yinbei irrigation area of Ningxia[J]. Remote Sensing for Land and Resources, 2021, 33(2):124-133.doi:10.6046/gtzyyg.2020210.
doi: 10.6046/gtzyyg.2020210
[26] Wivedi R S, Rao B R M. The selection of the best possible Landsat TM band combination for delineating salt-affected soils[J]. International Journal of Remote Sensing, 1992, 13(11):2051-2058.
doi: 10.1080/01431169208904252
[27] 吴家林. 阿拉尔垦区棉田土壤盐渍化的遥感监测与植棉效益分析[D]. 阿拉尔: 塔里木大学, 2021.
Wu J L. Remote sensing monitoring and cotton plantation benefit analysis of cotton field soil salinization in Alar Reclamation Area[D]. Aral: Tarim University, 2021.
[28] 边玲玲, 王卷乐, 郭兵, 等. 基于特征空间的黄河三角洲垦利县土壤盐分遥感提取[J]. 遥感技术与应用, 2020, 35(1):211-218.
Bian L L, Wang J L, Guo B, et al. Remote sensing extraction of soil salinity in Yellow River delta Kenli County based on feature space[J]. Remote Sensing Technology and Application, 2020, 35(1):211-218.
[29] 王遵亲, 祝寿泉, 尤文瑞, 等. 中国盐渍土[M]. 北京: 科学出版社,1993.
Wang Z Q, Zhu S Q, You W R, et al. Saline soil in China[M]. Beijing: Science Press,1993.
[30] Staff U S S L. Diagnosis and improvement of saline and alkali soils[J]. Agriculture Handbook, 1954, 60:83-100.
[31] 李艳菊, 丁建丽, 米热古力·艾尼瓦尔. 渭-库绿洲土壤剖面盐分分布特征及驱动因子分析[J]. 灌溉排水学报, 2019, 38(6): 58-65.
Li Y J, Ding J L, Ainiwaer M. Soil salt distribution and the factors affect it in Ogan Kucha River Oasis[J]. Journal of Irrigation and Drainage, 2019, 38(6):58-65.
[1] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[2] 李星佑, 张飞, 王筝. 土壤盐渍化遥感监测模型构建方法现状与发展趋势[J]. 自然资源遥感, 2022, 34(4): 11-21.
[3] 陈慧欣, 陈超, 张自力, 汪李彦, 梁锦涛. 一种基于Google Earth Engine云平台的潮间带遥感信息提取方法[J]. 自然资源遥感, 2022, 34(4): 60-67.
[4] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[5] 吴霞, 王长军, 樊丽琴, 李磊. 基于多光谱遥感的盐渍化评价指数对宁夏银北灌区土壤盐度预测的适用性分析[J]. 国土资源遥感, 2021, 33(2): 124-133.
[6] 郑覃, 潘军, 蒋立军, 邢立新, 季悦, 于一凡, 王鹏举, 仲伟敬. 基于光谱指数的高温目标识别方法[J]. 国土资源遥感, 2019, 31(3): 51-58.
[7] 冯娟, 丁建丽, 魏雯瑜. 基于雷达数据的区域土壤盐渍化监测[J]. 国土资源遥感, 2019, 31(1): 195-203.
[8] 关红, 贾科利, 张至楠, 马欣. 盐渍化土壤光谱特征分析与建模[J]. 国土资源遥感, 2015, 27(2): 100-104.
[9] 李晓明, 杨劲松, 余美, 杨奇勇, 刘梅先. 基于电磁感应的干旱区土壤盐渍化定量遥感研究[J]. 国土资源遥感, 2012, 24(1): 53-58.
[10] 林婷, 刘湘南, 谭正. 基于ICA和高光谱指数的水稻Zn污染监测模型[J]. 国土资源遥感, 2011, 23(2): 59-64.
[11] 戚浩平, 翁永玲, 赵福岳, 方洪宾. 茶卡-共和盆地土壤盐分与光谱特征研究[J]. 国土资源遥感, 2010, 22(s1): 4-8.
[12] 焦全军, 张霞, 张兵, 卫征, 郑兰芬. 基于叶片光谱的森林叶绿素浓度反演研究[J]. 国土资源遥感, 2006, 18(2): 26-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发