Please wait a minute...
 
国土资源遥感  2011, Vol. 23 Issue (2): 59-64    DOI: 10.6046/gtzyyg.2011.02.11
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于ICA和高光谱指数的水稻Zn污染监测模型
林婷, 刘湘南, 谭正
中国地质大学(北京)信息工程学院,北京100083
Zn Contamination Monitoring Model of Rice Based on ICA and Hyperspectral Index
 LIN Ting, LIU Xiang-Nan, TAN Zheng
China University of Geosciences, Beijing 100083, China
全文: PDF(844 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 从潜在光谱响应指数及光谱特征波段反射率两个层面对不同浓度水稻Zn污染胁迫进行遥感监测。在光谱指数层面,系统分析了高光谱遥感指数与Zn污染胁迫下的水稻叶绿素含量、水分含量、细胞结构和叶面积指数等4个重要生理生态参数变化特征的响应关系。通过实验,得到表征生态参数变化的高光谱遥感指数及其响应规律,建立响应水稻Zn污染的三维高光谱遥感指数空间识别模型; 在光谱反射率层面,利用独立分量分析(Independent Component Analysis,ICA)方法对可见光、近红外光谱区多个波段光谱反射率进行分量分解,找到反映Zn污染浓度变化的独立分量,建立可见光—近红外独立分量特征空间。不同浓度的水稻Zn污染在光谱指数空间和独立分量特征空间表现出不同的规律,结合上述两空间判别水稻Zn污染浓度,提高了可靠性和敏感性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 管道选线遥感地理信息系统层次分析法    
Abstract: Zn contamination of rice with different concentrations of stress was identified by the remote sensing diagnosis method from the potential Hyperspectral index and the representative spectral reflectance. At the spectral index level, the authors systematically analyzed the responsive relationships of the Hyperspectral index and four important physiological parameters under the stress of Zn pollution,which include chlorophyll content, water content,cell structure and leaf area index. Through the experiments,the authors extracted Hyperspectral remote sensing indexes which reflect the change of ecological parameters and their interactive reglarity,thus establishing the three-dimensional identification model of Hyperspectral remote sensing indexes which reflect the change of Zn contamination. At the spectral reflectance level,spectral reflectance of representative bands in visible and near infrared spectral bands were decomposed using the method of independent component analysis (ICA),and the independent components which reflect the change of Zn contamination concentration were found. Thus the visible-near infrared independent component space was established. Zn contamination with different concentrations exhibits different laws in the Hyperspectral index and independent component space,Zn contamination of rice with different concentrations can be determined combined with Hyperspectral index and independent component space,the reliability and sensitivity is improved.
Key wordsPipe-route selection    Remote sensing    Geographici Information system    Analytic Hierarchy Process
收稿日期: 2010-07-15      出版日期: 2011-06-17
: 

 

 
  TP 751.1

 
基金资助:

 国家自然科学基金项目(编号: 40771155)和国家高技术研究发展计划(863项目)专项(编号: 2007AA12Z174)共同资助。

通讯作者: 林婷(1987-),女,硕士研究生,主要研究方向为遥感信息分析与应用研究。
引用本文:   
林婷, 刘湘南, 谭正. 基于ICA和高光谱指数的水稻Zn污染监测模型[J]. 国土资源遥感, 2011, 23(2): 59-64.
LIN Ting, LIU Xiang-Nan, TAN Zheng. Zn Contamination Monitoring Model of Rice Based on ICA and Hyperspectral Index. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(2): 59-64.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/gtzyyg.2011.02.11      或      https://www.gtzyyg.com/CN/Y2011/V23/I2/59
[1]项长兴,董雅文,钱君龙,等.南京栖霞山铅锌矿区土壤环境质量评价[J].土壤,1993,25(6):319-323.
[2]马向平,仙麦龙,吕录仕,等.重庆市酸沉降污染造成的植被受害状况遥感监测研究[J].国土资源遥感,1997(4):14-20.
[3]田国良,包佩丽,李建军,等.土壤中镉、铜伤害对水稻光谱特性的影响[J].环境遥感,1990,5(2):140-149.
[4]Knoke K,Marwood T M,Cassidy M B,et al.A Comparison of Five Bioassays to Monitor Toxicity

During Bioremediation of Pentachlorophenol-contaminated Soil [J].Water,Air and Soil Pollution,1999,110:157-169.
[5]Mishra A,Choudhurt M A.Monitoring of Phytotoxicity of Lead and Mercury from Germination and Early Seedling Growth Indices in Two Rice Cultivars[J].Water,Air and Soil Pollution,1999,114:339-346.
[6]MARS J C,CROWLEY J K.Mapping Mine Wastes and Analyzing Areas Affected by Selenium Rich Water Run Off in Southeast Idaho Using AVIRIS Imagery and Digital Elevation Data[J].Remote Sensing of Environment,2003,84(3):422-436.
[7]刘圣伟,甘甫平,王润生.用卫星高光谱数据提取德兴铜矿区植被污染信息[J].国土资源遥感,2004(1):6-10.
[8]迟光宇,刘新会,刘素红,等.Cu污染与小麦特征光谱相关关系研究[J].光谱学与光谱分析,2006,26(7):1272-1276.
[9]王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究[J].农业工程学报,2002,18(1):9-13.
[10]Rouse J W,Haas R H,Schell J A,et al.Monitoring Vegetation Systems in the Great Plains with ERTS[C]//Proceedings of Third ERTS-1 Symposium.Washington:NASA SP-351,1973:309-317.
[11]Daughtry C S,Walthall C L,Kim M S,et al.Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance[J].Remote Sensing of Environment,2000,74(2):229-239.
[12]Blackburn G A.Spectral Indices for Estimating Photosynthetic Pigment Concentrations:A Test Using Senescent Tree Leaves[J].International Journal of RemoteSensing,1998,19(4):657-675.
[13]Clark R N,Roush T L.Reflectance Spectroscopy:Quantitative Analysis Techniques for Remote Sensing Applications[J].Journal of Geophysical Research,1984,89:6329-6340.
[14]Ogunjemiyo S,Roberts D A,Keightley K,et al.Evaluating the Relationship Between AVIRIS Water Vapor and Popular Plantation Evapotranspiration[J].Journal of Geophysical Research,2002,D107:ACL20.1-ACL20.15.
[15]Gao B C.NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space[J].Remote Sensing of Environment,1996,58:257-266.
[16]Penuelas J,Filella I,Elvira S,et al.Reflectance Assessment of Summer Ozone Fumigated Mediterranean White Pine Seedlings[J].Environ Exp Bot,1995,35(3):299-307.
[17]Gamon J A,Penuelas J,Field C B.A Narrow-wave Band Spectral Index that Tracks Diurnal Changes in Photosynthetic Efficiency[J].Remote Sensing of Environment,1992,41:35-44.
[18]Merton R,Huntington J.Early Simulation of the ARIES-1 Satellite Sensor for Multi-temporal Vegetation Research Derived from AVIRIS[J].Summaries of the Eight JPL Airborne Earth Science Workshop,1999,99(17):299-307.
[19]Wiegand C,Anderson G,Lingle S,et al.Soil Salinity Effects on Crop Growth and Yield:Illustration of an Analysis and Mapping Methodology for Sugarcane[J].Journal of Plant Physiology,1996,48(3-4):418-424.
[20]Comon P.Independent Component Analysis——a New Concept[J].Signal Processing,1994,36:287-314.
[1] 刘文, 王猛, 宋班, 余天彬, 黄细超, 江煜, 孙渝江. 基于光学遥感技术的冰崩隐患遥感调查及链式结构研究——以西藏自治区藏东南地区为例[J]. 自然资源遥感, 2022, 34(1): 265-276.
[2] 王茜, 任广利. 高光谱遥感异常信息在阿尔金索拉克地区铜金矿找矿工作中的应用[J]. 自然资源遥感, 2022, 34(1): 277-285.
[3] 吕品, 熊丽媛, 徐争强, 周学铖. 基于FME的矿山遥感监测矢量数据图属一致性检查方法[J]. 自然资源遥感, 2022, 34(1): 293-298.
[4] 张大明, 张学勇, 李璐, 刘华勇. 一种超像素上Parzen窗密度估计的遥感图像分割方法[J]. 自然资源遥感, 2022, 34(1): 53-60.
[5] 薛白, 王懿哲, 刘书含, 岳明宇, 王艺颖, 赵世湖. 基于孪生注意力网络的高分辨率遥感影像变化检测[J]. 自然资源遥感, 2022, 34(1): 61-66.
[6] 宋仁波, 朱瑜馨, 郭仁杰, 赵鹏飞, 赵珂馨, 朱洁, 陈颖. 基于多源数据集成的城市建筑物三维建模方法[J]. 自然资源遥感, 2022, 34(1): 93-105.
[7] 李伟光, 侯美亭. 植被遥感时间序列数据重建方法简述及示例分析[J]. 自然资源遥感, 2022, 34(1): 1-9.
[8] 丁波, 李伟, 胡克. 基于同期光学与微波遥感的茅尾海及其入海口水体悬浮物反演[J]. 自然资源遥感, 2022, 34(1): 10-17.
[9] 高琪, 王玉珍, 冯春晖, 马自强, 柳维扬, 彭杰, 季彦桢. 基于改进型光谱指数的荒漠土壤水分遥感反演[J]. 自然资源遥感, 2022, 34(1): 142-150.
[10] 张秦瑞, 赵良军, 林国军, 万虹麟. 改进遥感生态指数的宜宾市三江汇合区生态环境评价[J]. 自然资源遥感, 2022, 34(1): 230-237.
[11] 贺鹏, 童立强, 郭兆成, 涂杰楠, 王根厚. 基于地形起伏度的冰湖溃决隐患研究——以希夏邦马峰东部为例[J]. 自然资源遥感, 2022, 34(1): 257-264.
[12] 艾璐, 孙淑怡, 李书光, 马红章. 光学与SAR遥感协同反演土壤水分研究进展[J]. 自然资源遥感, 2021, 33(4): 10-18.
[13] 李特雅, 宋妍, 于新莉, 周圆锈. 卫星热红外温度反演钢铁企业炼钢月产量估算模型[J]. 自然资源遥感, 2021, 33(4): 121-129.
[14] 刘白露, 管磊. 南海珊瑚礁白化遥感热应力检测改进方法研究[J]. 自然资源遥感, 2021, 33(4): 136-142.
[15] 吴芳, 金鼎坚, 张宗贵, 冀欣阳, 李天祺, 高宇. 基于CZMIL测深技术的海陆一体地形测量初探[J]. 自然资源遥感, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发