Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (1): 81-89    DOI: 10.6046/zrzyyg.2022065
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
基于改进FLUS模型的北京市低碳土地利用情景模拟
李立(), 胡睿柯(), 李素红
河北工业大学经济管理学院,天津 300401
Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model
LI Li(), HU Ruike(), LI Suhong
School of Economy and Management, Hebei University of Technology, Tianjin 300401, China
全文: PDF(3288 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

合理的土地利用计划对避免高碳排放有着重要意义,进行低碳经济视角下的土地利用优化模拟有利于绿色发展和土地资源科学配置。以北京市为例,将兴趣点(point of interest,POI)数据纳入FLUS模型的BP-ANN算法模块中对其进行改进,利用2010年和2020年2期土地利用数据对改进模型的模拟精度进行对比验证。在此基础上,耦合Markov法及理想点法,对研究区2030年自然演变情景及低碳经济情景下的土地数量结构和空间布局进行模拟分析。研究结果表明: ①引入POI数据的FLUS模型在模拟2020年土地利用时,Kappa系数提高4.85%、总体精度提高3.42%,改进模型有利于提高模拟精度; ②经模拟验证,在自然演变情景中,碳排放量增加7.70%,建设用地面积增长7.68%,耕地、草地面积持续减退; ③在低碳经济情景中,与自然演变情景相比,碳排放量减少198.49万t,建设用地持续扩张的趋势得到遏制,浅山区草地被占用的现象得到缓解,北部林地面积增长明显。研究说明了土地利用模型的模拟精度随城市发展元素的变化而变化,纳入POI数据可以为土地规划提供更好的决策支持,低碳经济导向的土地结构调整及空间布局优化,可以为区域土地合理利用和规划布局提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李立
胡睿柯
李素红
关键词 POI数据FLUS模型情景模拟低碳经济    
Abstract

A rational land use plan is of great significance for avoiding high carbon emissions. The simulations of land use optimization from the perspective of low-carbon economy are conducive to the development of green economy and the scientific allocation of land resources. Taking Beijing as an example, this study incorporated the points of interest (POI) into the BP-ANN algorithm module of the FLUS model and verified the simulation accuracy of the improved model through comparison using the land use data of 2010 and 2020. On this basis, by coupling the Markov method and the order preference by similarity ideal solution (TOPSIS) method, this study simulated and analyzed the structure and spatial layout of land quantity in the study area in 2030 under the natural evolution scenario and the low-carbon economy scenario. The results show that: ① Compared with those of the original FLUS model, the Kappa coefficient and the overall accuracy of the improved model by incorporating POI data increased by 4.85% and 3.42%, respectively. These results indicate that the improved model had higher simulation accuracy. ② The simulation results verified that, under the natural evolution scenario, the carbon emission and the land for construction would increase by 7.70% and 7.68%, respectively, and the areas of farmland and grassland would continue to decline. ③ Under the low-carbon economy scenario, the carbon emissions would be reduced by 198.49×104 t, the continuous expansion trend of construction land would be curbed, the occupation of grassland in low mountainous areas would be mitigated, and the area of forest land in the north would increase significantly. The results show that the simulation accuracy of the land use model would change with urban development elements and that the incorporation of POI data helped to provide more effective decision support for land planning. The low-carbon economy-oriented land structure adjustment and spatial layout optimization can be used as a reference for the rational use, planning, and layout of regional lands.

Key wordsPOI data    FLUS model    scenario simulation    low-carbon economy
收稿日期: 2022-02-28      出版日期: 2023-03-20
ZTFLH:  TP79  
基金资助:河北省社会科学基金项目“河北省康养服务高质量发展的测度与驱动因素研究”(HB20YJ055)
通讯作者: 胡睿柯(1998-),女,硕士研究生,研究方向为土地利用规划。Email: huruike0902@163.com
作者简介: 李立(1968-),女,教授,博士,研究方向为土地利用与交通规划。Email: 3270627117@qq.com
引用本文:   
李立, 胡睿柯, 李素红. 基于改进FLUS模型的北京市低碳土地利用情景模拟[J]. 自然资源遥感, 2023, 35(1): 81-89.
LI Li, HU Ruike, LI Suhong. Simulations of the low-carbon land use scenarios of Beijing based on the improved FLUS model. Remote Sensing for Natural Resources, 2023, 35(1): 81-89.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022065      或      https://www.gtzyyg.com/CN/Y2023/V35/I1/81
数据类型 数据内容 数据来源及处理方式
统计数据 2011—2021年的相关土地利用数据; 历年能源消耗标准煤数量、各产业产值 《北京统计年鉴(2011—2021年)》
规划数据 耕地红线、生态空间约束等规划信息 《北京城市总体规划(2016—2035年)》等相关文件
土地利用数据 2010年和2020年2期土地利用遥感数据 来自GlobeLand30(全球地理信息公共产品),在ArcGIS软件中对原始数据进行镶嵌、裁剪,并将土地类型重分类为耕地、林地、草地、建设用地、水域和其他用地
驱动因子数据 自然地理 高程、坡度、坡向 DEM数据由地理空间数据云平台获得,并在ArcGIS软件中对原始DEM数据进一步处理得到坡度、坡向数据
交通可达性 到河流、主要道路、国道、高速、铁路的距离 路网数据来自OSM地图,在ArcGIS软件中采用欧氏距离工具进行处理得到可达性驱动因子
社会经济 GDP、人口密度 来源于中国科学院资源环境科学与数据中心,在ArcGIS软件中进行重采样处理
POI大数据 餐饮服务密度、政府/社会机构密度、住宅密度、酒店密度、科教文化服务密度、金融保险服务密度、公共交通设施密度、购物商超密度、公司企业密度、公共设施密度 采用北京大学开发研究数据平台于2018年发布的POI数据作为数据源,并于2021年9月通过高德开放平台API接口抓取POI数据作为进一步补充,将其分为10类,使用ArcGIS软件的核密度分析工具对其进行处理
Tab.1  数据说明
Fig.1  研究区土地利用变化驱动因子
情景 耕地 林地 草地 水域 建设用地 其他用地
自然演变情景 0.1 0.3 0.2 0.4 1.0 0.1
低碳经济情景 0.2 0.6 0.5 0.5 0.9 0.2
Tab.2  不同情景下土地邻域权重参数
模拟方法 耕地 林地 草地 水域 建设用地 其他用地
实际值 栅格数/102 1 534.81 3 318.37 374.77 339.07 1 563.44 162.87
原模型模拟 栅格数/102 1 628.75 3 401.98 389.41 331.09 1 421.46 120.64
模拟误差/% 6.12 2.52 3.91 2.35 9.08 25.93
改进模型模拟 栅格数/102 1 625.37 3 389.12 389.05 331.67 1 435.72 122.40
模拟误差/% 5.90 2.13 3.81 2.18 8.17 24.85
Tab.3  研究区2020年土地利用模拟结果对比
Fig.2  改进模型与原模型对比
变量 名称 土地利用现状(2020年) 情景1(2030年自然演变情景) 情景2(2030年低碳经济情景)
X1 耕地/hm2 345 331.70 323 879.47 325 176.40
X2 林地/hm2 746 634.08 747 136.34 756 537.52
X3 草地/hm2 84 323.67 82 049.36 82 508.40
X4 建设用地/hm2 351 774.06 378 795.06 366 955.98
X5 水域/hm2 76 291.41 71 957.61 72 504.60
X6 其他用地/hm2 36 645.08 37 183.14 37 317.10
F1(x) 经济效益/万元 364 059 651.83 391 530 894.60 379 492 633.73
F2(x) 碳排放量/t 58 541 616.80 63 047 593.81 61 062 740.35
Tab.4  不同情景下的土地利用结构
Fig.3  2030年研究区土地利用布局优化模拟结果
[1] Wang G Z, Han Q, Bauke D V. The multi-objective spatial optimization of urban land use based on low-carbon city planning[J]. Ecological Indicators, 2021, 125:107540.
doi: 10.1016/j.ecolind.2021.107540
[2] 马晓哲, 王铮. 土地利用变化对区域碳源汇的影响研究进展[J]. 生态学报, 2015, 35(17):5898-5907.
Ma X Z, Wang Z. Progress in the study on the impact of land-use change on regional carbon sources and sinks[J]. Acta Ecological Sinica, 2015, 35(17):5898-5907.
[3] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3):1-15.
Hu A G. China’s goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology(Social Science Edition), 2021, 21(3):1-15.
[4] Han D, Qiao R L, Ma X M. Optimization of land-use structure based on the trade-off between carbon emission targets and economic development in Shenzhen,China[J]. Sustainability, 2018, 11(1):1-17.
doi: 10.3390/su11010001
[5] 张雪花, 许文博, 张宝安. 雄安新区对京津冀城市群低碳协同发展促进作用预评估[J]. 经济地理, 2020, 40(3):16-23,83.
Zhang X H, Xu W B, Zhang B A. Pre-evaluation of the role of Xiongan New District in the low carbon synergy development of Beijing-Tianjin-Hebei urban agglomeration[J]. Economic Geo-graphy, 2020, 40(3):16-23,83.
[6] 许小亮, 李鑫, 肖长江, 等. 基于CLUE-S模型的不同情景下区域土地利用布局优化[J]. 生态学报, 2016, 36(17):5401-5410.
Xu X L, Li X, Xiao C J, et al. Land use layout optimization under different scenarios by using the CLUE-S model[J]. Acta Ecologica Sinica, 2016, 36(17):5401-5410.
[7] 王昊煜, 高培超, 谢一茹, 等. 基于改进型NSGA-Ⅱ算法的西宁市土地利用多目标优化[J]. 地理与地理信息科学, 2020, 36(6):84-89.
Wang H Y, Gao P C, Xie Y R, et al. Multi-objective optimization of land use in Xining City based on improve NSGA-Ⅱ[J]. Geography and Geo-Information Science, 2020, 36(6):84-89.
[8] Wang M, Dong Z Y, Wei X, et al. Optimization of the spatial pattern of land use in mountain towns: A case study of Yuexi County,Anqing City,Anhui Province[J]. IOP Conference Series:Earth and Environmental Science, 2020, 569:012085.
doi: 10.1088/1755-1315/569/1/012085
[9] 曾永年, 王慧敏. 以低碳为目标的海东市土地利用结构优化方案[J]. 资源科学, 2015, 37(10):2010-2017.
Zeng Y N, Wang H M. Optimization of land use structure for low-carbon targets in Haidong City,Qinghai Plateau[J]. Resources Science, 2015, 37(10):2010-2017.
[10] Zhu J, Sun Y Z, Song S Y, et al. Cellular automata for simulating land-use change with a constrained irregular space representation:A case study in Nanjing City,China[J]. Environment and Planning B:Urban Analytics and City Science, 2021, 48(7):1841-1859.
doi: 10.1177/2399808320949889
[11] Luo G P, Yin C Y, Chen X, et al. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale:A case study of Sangong watershed in Xinjiang,China[J]. Ecological Complexity, 2010, 7(2):198-207.
doi: 10.1016/j.ecocom.2010.02.001
[12] 王志远, 张考, 丁志鹏, 等. 纳入动态数据的改进FLUS模型在城市增长边界划定中的应用[J]. 地球信息科学学报, 2020, 22(12):2326-2337.
doi: 10.12082/dqxxkx.2020.200373
Wang Z Y, Zhang K, Ding Z P, et al. Delimitation of urban growth boundary based on improved FLUS model considering dynamic data[J]. Journal of Geo-Information Science, 2020, 22(12): 2326-2337.
[13] 宋世雄, 梁小英, 陈海, 等. 基于多智能体和土地转换模型的耕地撂荒模拟研究——以陕西省米脂县为例[J]. 自然资源学报, 2018, 33(3):515-525.
doi: 10.11849/zrzyxb.20170040
Song S X, Liang X Y, Chen H, et al. The simulation of cropland abandonment based on multi-agent system and land transformation model:A case study of Mizhi County,Shaanxi Province[J]. Journal of Natural Resources, 2018, 33(3):515-525.
[14] Liu X P, Liang X, Li X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168:94-116.
doi: 10.1016/j.landurbplan.2017.09.019
[15] 苏迎庆, 刘庚, 赵景波, 等. 基于FLUS模型的汾河流域生态空间多情景模拟预测[J]. 干旱区研究, 2021, 38(4):1152-1161.
Su Y Q, Liu G, Zhao J B, et al. Multi-scenario simulation prediction of ecological space in Fenhe River basin based on FLUS model[J]. Arid Zone Research, 2021, 38(4):1152-1161.
[16] 曹帅, 金晓斌, 杨绪红, 等. 耦合MOP与GeoSOS-FLUS模型的县级土地利用结构与布局复合优化[J]. 自然资源学报, 2019, 34(6):1171-1185.
doi: 10.31497/zrzyxb.20190604
Cao S, Jin X B, Yang X H, et al. Coupled MOP and GeoSOS-FLUS models research on optimization of land use structure and layout in Jintan District[J]. Journal of Natural Resources, 2019, 34(6):1171-1185.
doi: 10.31497/zrzyxb.20190604
[17] 张经度, 梅志雄, 吕佳慧, 等. 纳入空间自相关的FLUS模型在土地利用变化多情景模拟中的应用[J]. 地球信息科学学报, 2020, 22(3):531-542.
doi: 10.12082/dqxxkx.2020.190359
Zhang J D, Mei Z X, Lyu J H, et al. Simulating multiple land use scenarios based on the FLUS model considering spatial autocorrelation[J]. Journal of Geo-Information Science, 2020, 22(3): 531-542.
[18] 程雨薇. 基于改进FLUS模型的杭州市土地利用格局模拟[D]. 杭州: 浙江大学, 2019.
Cheng Y W. Lang use simulation in Hangzhou based on improved FLUS model[D]. Hangzhou: Zhejiang University, 2019.
[19] Miao R M, Wang Y X, Li S. Analyzing urban spatial patterns and functional zones using Sina Weibo POI Data:A case study of Beijing[J]. Sustainability, 2021, 13(2):1-15.
doi: 10.3390/su13010001
[20] 罗紫薇, 胡希军, 韦宝婧, 等. 基于多准则CA-Markov模型的城市景观格局演变与预测——以上杭县城区为例[J]. 经济地理, 2020, 40(10):58-66.
Luo Z W, Hu X J, Wei B J, et al. Urban landscape pattern evolution and prediction based on multi-criteria CA-Markov model: Take Shanghang County as an example[J]. Economic Geography, 2020, 40(10):58-66.
[21] 刘晓娟, 黎夏, 梁迅, 等. 基于FLUS-InVEST模型的中国未来土地利用变化及其对碳储量影响的模拟[J]. 热带地理, 2019, 39(3):397-409.
Liu X J, Li X, Liang X, et al. Simulating the change of terrestrial carbon storage in China based on the FLUS-InVEST model[J]. Tropical Geography, 2019, 39 (3):397-409.
doi: 10.13284/j.cnki.rddl.003138
[22] 王旭, 马伯文, 李丹, 等. 基于FLUS模型的湖北省生态空间多情景模拟预测[J]. 自然资源学报, 2020, 35(1):230-242.
doi: 10.31497/zrzyxb.20200119
Wang X, Ma B W, Li D, et al. Multi-scenario simulation and prediction of ecological space in Hubei Province based on FLUS model[J]. Journal of Natural Resources, 2020, 35(1):230-242.
doi: 10.31497/zrzyxb.20200119
[23] Liang X, Liu X P, Li X, et al. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method[J]. Landscape and Urban Planning, 2018, 177:47-63.
doi: 10.1016/j.landurbplan.2018.04.016
[1] 王正, 贾公旭, 张清凌, 黄粤. COVID-19疫情背景下2020年第一季度广东省二、三产业GDP空间分布变化分析[J]. 自然资源遥感, 2021, 33(3): 184-193.
[2] 施云霞, 王范霞, 毋兆鹏. 基于CLUE_S模型的精河流域绿洲土地利用空间格局多情景模拟[J]. 国土资源遥感, 2016, 28(2): 154-160.
[3] 张晓浩, 娄全胜, 刘凯. 基于遥感和GIS的生物质能集约化利用[J]. 国土资源遥感, 2010, 22(3): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发