Please wait a minute...
 
自然资源遥感  2022, Vol. 34 Issue (3): 129-137    DOI: 10.6046/zrzyyg.2021237
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
机载LiDAR在红树林林分平均高估算中的应用
邓静雯1(), 田义超1,2(), 张强1, 陶进1,3, 张亚丽1, 黄升光3
1.北部湾大学资源与环境学院,钦州 535000
2.北部湾大学广西北部湾海洋灾害研究重点实验室,钦州 535000
3.北部湾大学海洋地理信息资源开发利用重点实验室,钦州 535000
Application of airborne LiDAR in the estimation of the mean height of mangrove stand
DENG Jingwen1(), TIAN Yichao1,2(), ZHANG Qiang1, TAO Jin1,3, ZHANG Yali1, HUANG Shengguang3
1. Collage of Resources and Environment, Beibu Gulf University, Qinzhou 535000, China
2. Guangxi Key Laboratory of Marine Disaster in the Beibu Gulf, Beibu Gulf University, Qinzhou 535000, China
3. Key Laboratory of Marine Geographic Information Resources Development and Utilization, Beibu Gulf University, Qinzhou 535000, China
全文: PDF(7423 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

构建基于激光雷达(light detection and ranging,LiDAR)数据的林分平均高反演模型可为无瓣海桑长势的动态监测提供技术支撑。以北部湾茅尾海无瓣海桑红树林湿地为对象,基于机载LiDAR提取的高度和强度参数变量,借助决定系数R2、均方根误差RMSE、赤池信息准则AIC和贝叶斯信息准则BIC指标对随机森林、支持向量机以及神经网络3种模型进行了优选,在最优模型的支持下估算了研究区的红树林平均高及其空间分布状况。结果表明,研究区无瓣海桑的林分平均高介于3.90~11.58 m之间,其中树高较高、胸径较大的无瓣海桑主要分布在潮沟附近以及研究区中部。在估算无瓣海桑的林分平均高时,贡献率最大的是样方点云高度最大值,其次是75%~99%分位数高度。随机森林回归模型在估测林分平均高模型中的精度最高(R2=0.938 1,RMSE=0.58 m,AIC=80.50和BIC=49.05); 支持向量机模型次之,该模型在测试阶段的R2为0.766 5,RMSE为1.27 m; 神经网络模型的拟合效果最差。总体而言,随机森林模型是研究区无瓣海桑林分平均高反演的最优模型。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓静雯
田义超
张强
陶进
张亚丽
黄升光
关键词 无瓣海桑支持向量机神经网络随机森林林分平均高    
Abstract

This study constructed a stand mean height inversion model based on LiDAR data, aiming to provide dynamic monitoring of the growth of Sonneratia apetala. Taking the mangrove wetland of Sonneratia apetala in the Maowei Sea of Beibu Gulf as the study object and based on the height and intensity parameters extracted using airborne LiDAR data, this study compared three models, namely random forest, support vector machine, and neural network, based on the coefficient of determination (R2), root mean square error (RMSE), Akachi information criterion (AIC), and Bayesian information criterion (BIC) and then estimated the mean height and spatial distribution of Mangrove in the study area using the optimal model. The results are as follows. The stand mean height of Sonneratia apetala in the study area is 3.90~11.58 m, and Sonneratia apetala with a higher tree height and a larger diameter at breast height is mainly distributed near the tidal trench and the middle part of the study area. In the estimation of the stand mean height of Sonneratia apetala, the maximum percentile height (hmax) had the highest contribution rate, followed by 75%~99% percentile height. The random forest regression model yielded the highest precision (R2=0.938 1,RMSE=0.58 m,AIC=80.50, and BIC=49.05), followed by the support vector machine model (R2 = 0.766 5 and RMSE = 1.27 m in the test stage), and the neural network regression model yielded the worst fitting effects. Overall, the random forest model is the optimal model for the inversion of the stand mean height of Sonneratia apetala in the study area.

Key wordsSonneratia apetala    support vector machine    neural network    random forest    stand mean height
收稿日期: 2021-07-28      出版日期: 2022-09-21
ZTFLH:  S771.8  
  TP79  
基金资助:国家自然科学基金项目“桂西南峰丛洼地流域生态系统服务权衡关系及其驱动机制”(42061020);广西创新驱动发展专项项目“海岸双频激光LiDAR探测仪产品开发与应用示范”(AA18118038);广西科技基地和人才项目“广西钦州湾红树林岛群生态系统健康评价及应用示范”(2019AC20088);广西壮族自治区大学生创新创业训练项目“基于激光雷达数据的红树林地上生物量与碳储量反演”(202011607186)
通讯作者: 田义超
作者简介: 邓静雯(1999-),女,学士,主要从事遥感信息应用研究。Email: 1687606800@qq.com
引用本文:   
邓静雯, 田义超, 张强, 陶进, 张亚丽, 黄升光. 机载LiDAR在红树林林分平均高估算中的应用[J]. 自然资源遥感, 2022, 34(3): 129-137.
DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2021237      或      https://www.gtzyyg.com/CN/Y2022/V34/I3/129
Fig.1  研究区红树林地理位置
Fig.2  研究区野外实测样地数据获取
Fig.3  样方机载LiDAR数据
变量 变量意义
hp01\ip01,…,hp99\ip99 所有点云1%,…,99%分位数处对应的高度\强度值
hmax\imax 样方点云高度\强度的最大值
hmin\imin 样方点云高度\强度的最小值
hmean\imean 样方点云高度\强度的平均值mean,计算公式为: m e a n = j = 1 m x j m
hstddev\istddev 样方点云高度\强度的标准差stddev,计算公式为: s t d d e v = 1 m j = 1 m ( x j - x - ) 2
hcv\icv 样方点云高度\强度的变异系数cv,计算公式为: c v = s t d d e v m e a n
imode\imode 样方点云高度\强度的众数
hiq\iiq 样方点云百分位数高度\强度的四分位数间距iq,计算公式为: i q = p 75 - p 25
Tab.1  用于林分平均高估测的点云特征统计量
Fig.4  BP神经网络原理图
参数 最大值 最小值 平均值 标准差
树高/m 13.58 1.55 8.09 2.69
胸径/cm 41.00 0.70 15.38 5.55
林分平均高/m 12.02 3.47 8.19 2.28
Tab.2  外业测量树高、胸径和林分平均高的基本统计量
Fig.5  变量重要性图
模型 训练集 测试集
R2 RMSE/m AIC BIC R2 RMSE/m AIC BIC
随机森林 0.985 7 0.28 36.59 21.42 0.938 1 0.58 80.50 49.05
支持向量机 0.985 6 0.30 37.18 22.00 0.766 5 1.27 87.85 56.40
神经网络 0.978 5 0.34 47.01 31.84 0.436 4 2.90 107.61 76.16
Tab.3  3种ML模型在林分平均高检索中的性能比较
Fig.6  不同回归模型的训练和测试结果
Fig.7  林分平均高分布
[1] 庞勇, 李增元, 陈尔学, 等. 激光雷达技术及其在林业上的应用[J]. 林业科学, 2005(3):129-136.
Pang Y, Li Z Y, Chen E X, et al. LiDAR remote sensing technology and its application in forestry[J]. Scientia Silvae Sinicae, 2005(3):129-136.
[2] Næsset E, Økland T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve[J]. Remote Sensing of Environment, 2002, 79(1):105-115.
doi: 10.1016/S0034-4257(01)00243-7
[3] Andersen H E, Mcgaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LiDAR data[J]. Remote Sensing of Environment, 2005, 94(4):441-449.
doi: 10.1016/j.rse.2004.10.013
[4] 焦义涛, 邢艳秋, 霍达, 等. 基于机载LiDAR点云估测林分的平均树高[J]. 西北林学院学报, 2015, 30(3):170-174.
Jiao Y T, Xing Y Q, Huo D, et al. Study on mean canopy height estimation from airborne LiDAR point cloud date[J]. Journal of Northwest Forestry University, 2015, 30(3):170-174.
[5] 洪奕丰, 张守攻, 陈伟, 等. 基于机载激光雷达的落叶松组分生物量反演[J]. 林业科学研究, 2019, 32(5):83-90.
Hong Y F, Zhang S G, Chen W, et al. Inversion of biomass components for Larix olgensis plantation using airborne LiDAR[J]. Forest Research, 2019, 32(5):83-90.
[6] Li M, Im J, Quackenbush L J, et al. Forest biomass and carbon stock quantification using airborne LiDAR data:A case study over Huntington Wildlife Forest in the Adirondack Park[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 7(7):3143-3156.
doi: 10.1109/JSTARS.2014.2304642
[7] Monnet J M, Chanussot J, Berger F. Support vector regression for the estimation of forest stand parameters using airborne laser scanning[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):580-584.
doi: 10.1109/LGRS.2010.2094179
[8] 鲁林, 周小成, 余治忠, 等. 随机森林算法在机载LiDAR数据林分平均树高估算中的应用研究[J]. 地球信息科学学报, 2016, 18(8):1133-1140.
doi: 10.3724/SP.J.1047.2016.01133
Lu L, Zhou X C, Yu Z Z, et al. Plot-level forest height inversion using airborne LiDAR data based on the random forest[J]. Journal of Geo-Information Science, 2016, 18(8):1133-1140.
[9] 赵勋, 岳彩荣, 李春干, 等. 基于机载LiDAR数据估测林分平均高[J]. 林业科学研究, 2020, 33(4):59-66.
Zhao X, Yue C R, Li C G, et al. Estimation of forest stand mean height based on airborne LiDAR point cloud data[J]. Forest Research, 2020, 33(4):59-66.
[10] 王德智. 结合UAV-LiDAR和卫星遥感数据的红树林多尺度观测方法研究[D]. 武汉: 中国地质大学(武汉), 2020.
Wang D Z. Integration of UAV-LiDAR data and satellite imagery for multi-scale mangrove observation[D]. Wuhan: China University of Geosciences(Wuhan), 2020.
[11] Tian Y C, Huang H, Zhang G Q, et al. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing[J]. Science of the Total Environment, 2021, 781:146816-146834.
doi: 10.1016/j.scitotenv.2021.146816
[12] 廖宝文, 郑松发, 陈玉军, 等. 外来红树植物无瓣海桑生物学特性与生态环境适应性分析[J]. 生态学杂志, 2004(1):10-15.
Liao B W, Zheng S F, Chen Y J, et al. Biological characteristics and ecological adaptability for non-indigenous mangrove species Sonneratia apetala[J]. Chinese Journal of Ecology, 2004(1):10-15.
[13] 邓必玉. 广西钦州沿海无瓣海桑入侵性初探[J]. 湖北林业科技, 2020, 49(5):46-52.
Deng B Y. A preliminary exploration on the eological invasion of Sonneratia apetala in Qinzhou area of Guangxi[J]. Hubei Forestry Science and Technology, 2020, 49(5):46-52.
[14] 田义超, 黄远林, 张强, 等. 北部湾典型海岛生态系统服务价值空间异质性对比研究[J]. 海洋科学, 2019, 43(2):60-68.
Tian Y C, Huang Y L Zhang Q, et al. A comparative study of spatial heterogeneity of ecosystem service value in typical islands in Beibu Gulf[J]. Marine Sciences, 2019, 43(2):60-68.
[15] 周生祥. 林分平均树高的求算与分析[J]. 华东森林经理, 1989(3):37-45.
Zhou S X. Calculation and analysis of mean height of tree stand[J]. East China Forest Management, 1989(3):37-45.
[16] Baltsavias E P. Airborne laser scanning:Basic relations and formulas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999, 54(2-3):199-214.
doi: 10.1016/S0924-2716(99)00015-5
[17] 邵为真, 赵富燕, 梁周雁. 基于不规则三角网的渐进加密滤波算法研究[J]. 北京测绘, 2016(6):17-21.
Shao W Z, Zhao F Y, Liang Z Y. The research of improved progressive triangulated irregular network densification filtering algorithm[J]. Beijing Surveying and Mapping, 2016(6):17-21.
[18] Breiman L. Random forest[J]. Machine Learning, 2001, 45:5-32.
doi: 10.1023/A:1010933404324
[19] Gholami R, Fakhari N. Support vector machine:Principles,parameters,and applications[J]. Handbook of Neural Computation, 2017, 27:515-535.
[20] 欧强新. 基于机器学习的吉林天然针阔混交林生长建模[D]. 北京: 中国林业科学研究院, 2019.
Ou Q X. Modeling stand growth of natural conifer and broadleaf mixed forests in Jilin Province based on machine learning[D]. Beijing: Chinese Academy of Forestry, 2019.
[21] Akaike H T. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6):716-723.
doi: 10.1109/TAC.1974.1100705
[22] Schwarz G E. Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6(2):461-464.
[23] Vrieze, Scott I. Model selection and psychological theory:A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)[J]. Psychological methods, 2012, 17(2):228-243.
doi: 10.1037/a0027127 pmid: 22309957
[24] 张晓君, 管伟, 廖宝文, 等. 珠海人工红树林与天然红树林群落特征比较研究[J]. 生态科学, 2014, 33(2):321-326.
Zhang X J, Guan W, Liao B W, et al. Comparison on the community characteristics between artificial and natural mangroves in Zhuhai City[J]. Ecological Science, 2014, 33(2):321-326.
[25] 黄晓敏, 卢昌义. 厦门海湾典型无瓣海桑人工种群特征和幼苗更新扩散现状研究[J]. 生态科学, 2018, 37(5):1-6.
Huang X M, Lu C Y. Studies on the characteristics of artificial population of Sonneratia apetala and the current recruitment and dispersal of the seedlings in Xiamen Bay[J]. Ecological Science, 2018, 37(5):1-6.
[26] 吴瑞, 陈丹丹, 王道儒, 等. 海南省东寨港红树林资源现状调查分析[J]. 热带农业科学, 2016, 36(9):62-71.
Wu R, Chen D D, Wang D R, et al. Survey of mangrove resources in Dongzhai Harbour of Hainan Province[J]. Chinese Journal of Tropical Agriculture, 2016, 36(9):62-71.
[27] 郑俊鸣, 舒志君, 方笑, 等. 红树林造林修复技术探讨[J]. 防护林科技, 2016(1):99-103.
Zheng J M, Shu Z J, Fang X, et al. Discussion on techniques of mangrove afforestation and rehabilitation[J]. Protection Forest Science and Technology, 2016(1):99-103.
[28] 廖宝文. 中国红树林恢复与重建技术[M]. 北京: 科学出版社, 2010:20-44.
Liao B W. Restoration and teconstruction techniques of mangrove forests in China[M]. Beijing: Science Press, 2010:20-44.
[29] Lu D S, Chen Q, Wang G X, et al. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates[J]. International Journal of Forestry Research, 2012(2):436537-436553.
[30] Brice M, Michael A W, Geordie W H, et al. Forest inventory stand height estimates from very high spatial resolution satellite imagery calibrated with LiDAR plots[J]. International Journal of Remote Sensing, 2013, 34(12):4406-4424.
doi: 10.1080/01431161.2013.779041
[31] Pourrahmati M R, Baghdadi N, Darvishsefat A A, et al. Mapping Lorey’s height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images[J]. European Journal of Remote Sensing, 2018, 51(1):100-115.
doi: 10.1080/22797254.2017.1405717
[32] Waske B, Benediktsson J A, Árnason, et al. Mapping of hyperspectral AVIRIS data using machine-learning algorithms[J]. Canadian Journal of Remote Sensing, 2009, 35(1):106-116.
[1] 席磊, 舒清态, 孙杨, 黄金君, 宋涵玥. 基于ICESat2的西南山地森林LAI遥感估测模型优化[J]. 自然资源遥感, 2023, 35(3): 160-169.
[2] 陈昊宇, 项磊, 高贺, 牟金燚, 索晓晶, 滑博伟. 基于分数阶微分的土壤全氮高光谱反演[J]. 自然资源遥感, 2023, 35(3): 170-178.
[3] 排日海·合力力, 昝梅. 干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3): 201-211.
[4] 梁锦涛, 陈超, 张自力, 刘志松. 一种融合指数与主成分分量的随机森林遥感图像分类方法[J]. 自然资源遥感, 2023, 35(3): 35-42.
[5] 徐欣钰, 李小军, 赵鹤婷, 盖钧飞. NSCT和PCNN相结合的遥感图像全色锐化算法[J]. 自然资源遥感, 2023, 35(3): 64-70.
[6] 李志新, 王梦飞, 贾伟洁, 纪松, 王宇飞. 一种结合阴影信息的建筑物层数识别方法[J]. 自然资源遥感, 2023, 35(3): 97-106.
[7] 伍炜超, 叶发旺. 面向多背景环境的Sentinel-2云检测[J]. 自然资源遥感, 2023, 35(3): 124-133.
[8] 郭晓萌, 方秀琴, 杨露露, 曹煜. 基于人工神经网络的西辽河流域根区土壤湿度估算[J]. 自然资源遥感, 2023, 35(2): 193-201.
[9] 郑宗生, 刘海霞, 王振华, 卢鹏, 沈绪坤, 唐鹏飞. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2): 105-111.
[10] 胡建文, 汪泽平, 胡佩. 基于深度学习的空谱遥感图像融合综述[J]. 自然资源遥感, 2023, 35(1): 1-14.
[11] 吴玉鑫, 王卷乐, 韩保民, 严欣荣. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1): 180-188.
[12] 孙盛, 蒙芝敏, 胡忠文, 余旭. 多尺度轻量化CNN在SAR图像地物分类中的应用[J]. 自然资源遥感, 2023, 35(1): 27-34.
[13] 赵连杰, 吴孟泉, 郑龙啸, 栾绍鹏, 赵贤峰, 薛明月, 刘佳燕, 刘晨曦. 胶东半岛北部海岸线时空变迁及驱动分析[J]. 自然资源遥感, 2022, 34(4): 87-96.
[14] 孔卓, 杨海涛, 郑逢杰, 李扬, 齐济, 朱沁雨, 杨忠霖. 高光谱遥感图像大气校正研究进展[J]. 自然资源遥感, 2022, 34(4): 1-10.
[15] 张昊, 高小红, 史飞飞, 李润祥. 基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取——以青海民和县为例[J]. 自然资源遥感, 2022, 34(4): 144-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发