Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 114-121    DOI: 10.6046/zrzyyg.2022304
  技术方法 本期目录 | 过刊浏览 | 高级检索 |
融合超像素和多属性形态学轮廓方法的高光谱图像分类
李雷1(), 孙希延2, 纪元法2(), 付文涛3
1.桂林电子科技大学精密导航技术及应用广西重点实验室,桂林 541004
2.桂林电子科技大学信息与通信学院,桂林 541004
3.卫星导航定位与位置服务国家地方联合工程研究中心,桂林 541004
Hyperspectral image classification based on superpixel segmentation and extended multi-attribute profiles
LI Lei1(), SUN Xiyan2, JI Yuanfa2(), FU Wentao3
1. Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
2. Information and Communication School, Guilin University of Electronic Technology, Guilin 541004, China
3. National & Local Joint Engineering Research Center of Satellite Navigation Positioning and Location Service, Guilin 541004, China
全文: PDF(5254 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

基于超像素分割的图像处理方法近年来被广泛应用于高光谱遥感图像(hyperspectral image,HSI)分类过程中,但是其单一尺度下无法充分提取HSI的丰富信息,且分类过程受参数依赖严重。因此针对基于超像素分割的HSI分类技术利用空间信息不足的问题,提出一种超像素分割方法和扩展多属性轮廓(extended multi-attribute profile,EMAP)方法相结合的HSI图像分类方法。该方法首先采用超像素分割方法提取超像素级特征,同时利用EMAP方法提取像素级HSI特征,融合2种特征后的图像具有完整的HSI结构特性,考虑到融合之后的信息冗余,采用递归滤波的方法进行光谱学滤波,最后将特征输入到支持向量机(support vector machine,SVM)分类器中,确定像素的标签。在Indian Pines和University of Pavia 这2个数据集上实验,分析了参数的变化对分类精度的影响,并与其他同类算法相比较,分类精度和Kappa系数较S3-PCA方法分别提高了3.55百分点和2.88百分点。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雷
孙希延
纪元法
付文涛
关键词 高光谱图像分类信息融合特征提取超像素分割    
Abstract

Superpixel segmentation-based image processing has been extensively used for the classification of hyperspectral images (HSI) in recent years. However, it fails to fully extract the HSI information at a single scale, and its classification process highly depends on parameters. Given the insufficient spatial information utilization by the superpixel segmentation-based HSI classification technology, this study proposed an HSI classification method that combines the superpixel segmentation method and the extended multi-attribute profile (EMAP) method. First, the superpixel segmentation and EMAP methods were employed to extract superpixel-level and pixel-level HSI features, respectively. By fusing the two types of features, the resulting images displayed complete HSI structural characteristics. To eliminate information redundancy, the fused images were subjected to spectral filtering through the recursive filtering method. Finally, the features were input to the support vector machine (SVM) for pixel tag determination. Experiments on the Indian Pines and University of Pavia datasets analyzed the effects of parameter variations on classification accuracy. Compared with the S3-PCA algorithm, the method proposed in this study exhibited superior classification accuracy and Kappa coefficient, which were improved by 3.55 and 2.88 percentage points, respectively.

Key wordshyperspectral image classification    information fusion    feature extraction    superpixel segmentation
收稿日期: 2022-07-27      出版日期: 2023-12-21
ZTFLH:  TP751.1  
基金资助:广西科技厅项目“基于北斗的境内外地质勘查监测空间信息服务及应用示范”(AA17202033)
通讯作者: 纪元法(1975-),男,博士,教授,研究方向为卫星导航与接收机。Email: jiyuanfa@163.com
作者简介: 李雷(1998-),男,硕士研究生,研究方向为高光谱遥感图像处理。Email: 921427610@qq.com
引用本文:   
李雷, 孙希延, 纪元法, 付文涛. 融合超像素和多属性形态学轮廓方法的高光谱图像分类[J]. 自然资源遥感, 2023, 35(4): 114-121.
LI Lei, SUN Xiyan, JI Yuanfa, FU Wentao. Hyperspectral image classification based on superpixel segmentation and extended multi-attribute profiles. Remote Sensing for Natural Resources, 2023, 35(4): 114-121.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022304      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/114
Fig.1  分类框架示意图
Fig.2  获取超像素级特征
Fig.3  获取像素级特征
Fig.4  Indian Pines数据集
Fig.5  University of Pavia数据集
Fig.6  Indian Pines数据集分类结果
指标 SVM PCA LDA BG-SuperPCA S3-PCA SuperPCA 本文算法
OA 85.23 83.52 84.74 87.35 94.62 93.56 98.26
AA 83.51 84.69 82.34 88.10 95.39 94.37 97.63
Kappa系数 83.62 82.69 83.08 87.96 95.10 94.50 98.65
Tab.1  Indian Pines 数据集分类精度对比
Fig.7  University of Pavia数据集分类结果
指标 SVM PCA LDA BG-SuperPCA S3-PCA SuperPCA 本文算法
OA 86.39 84.45 86.75 89.35 96.34 95.20 97.68
AA 85.78 86.12 86.10 88.36 95.56 94.85 98.45
Kappa系数 84.23 84.55 85.19 88.67 95.78 94.03 98.66
Tab.2  University of Pavia 数据集分类精度对比
Fig.8  分类精度随训练集变化图
Fig.9  Kappa系数随超像素数目变化图
Fig.10  Indian Pines数据集消融试验分析
[1] Camps-Valls G, Tuia D, Bruzzone L, et al. Advances in hyperspectral image classification:Earth monitoring with statistical learning methods[J]. IEEE Signal Processing Magazine, 2014, 31(1):45-54.
[2] Yan L, Zhu R, Mo N, et al. Cross-domain distance metric learning framework with limited target samples for scene classification of aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6):3840-3857.
doi: 10.1109/TGRS.36
[3] Lu X, Zhang W, Li X. A hybrid sparsity and distance-based discrimination detector for hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3):1704-1717.
doi: 10.1109/TGRS.2017.2767068
[4] Horstrand P, Diaz M, Guerra R, et al. A novel hyperspectral anomaly detection algorithm for real-time applications with push-broom sensors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12):4787-4797.
doi: 10.1109/JSTARS.2019.2919911
[5] Shimoni M, Haelterman R, Perneel C. Hypersectral imaging for military and security applications:Combining myriad processing and sensing techniques[J]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7(2):101-117.
doi: 10.1109/MGRS.2019.2902525
[6] Tong X Y, Xia G S, Lu Q, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models[J/OL]. arXiv, 2018(2018-07-16)[2022-10-04]. https://arxiv.org/abs/1807.05713v2.
[7] Krupnik D, Khan S-D. Close-range,ground-based hyperspectral imaging for mining applications at various scales:Review and case studies[J]. Earth-Science Reviews, 2019, 198:102952.
doi: 10.1016/j.earscirev.2019.102952
[8] Li W, Du Q, Zhang F, et al. Hyperspectral image classification by fusing collaborative and sparse representations[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9):4178-4187.
doi: 10.1109/JSTARS.4609443
[9] Kang X, Li S, Benediktsson J A. Spectral-spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2666-2677.
doi: 10.1109/TGRS.2013.2264508
[10] Liang J, Zhou J, Gao Y. Tensor morphological profile for hyperspectral image classification[C]// IEEE International Conference on Image Processing.IEEE, 2016, 20(6):25-39
[11] 付航, 孙根云, 赵云华, 等. 多尺度超像素分割和奇异谱分析的高光谱影像分类[J]. 中国图象图形学报, 2021, 26(8):1978-1993.
Fu H, Sun G Y, Zhao Y H, et al. Combining multiscale superpixel segmentation and singular spectral analysis for hyperspectral image classification[J]. Journal of Image and Graphics, 2021, 26(8):1978-1993.
[12] Liao J, Wang L, Zhao G, et al. Hyperspectral image classification based on bilateral filter with linear spatial correlation information[J]. International Journal of Remote Sensing, 2019, 40(17):6861-6883.
doi: 10.1080/01431161.2019.1597301
[13] Feng J, Zhang J, Zhang Y. A multiview spectral-spatial feature extraction and fusion framework for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19:5504805.
[14] Ren L, Zhao L, Wang Y. A superpixel-based dual window RX for hyperspectral anomaly detection[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(7):1233-1237.
doi: 10.1109/LGRS.8859
[15] Sellars P, Aviles-Rivero A, Schonlieb C B. Superpixel contracted graph-based learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):4180-4193.
doi: 10.1109/TGRS.36
[16] Jiang J, Ma J, Chen C, et al. SuperPCA:A superpixelwise PCA approach for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8):4581-4593.
doi: 10.1109/TGRS.2018.2828029
[17] Zhang X, Jiang X, Jiang J, et al. Spectral-spatial and superpixelwise PCA for unsupervised feature extraction of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:552210.
[18] Beirami A B, Mokhtarzade M. Band grouping SuperPCA for feature extraction and extended morphological profile production from hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11):1953-1957.
doi: 10.1109/LGRS.8859
[19] Jia S, Deng X, Xu M, et al. Superpixel-level weighted label propagation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):5077-5091.
doi: 10.1109/TGRS.36
[20] 王扣准, 黄睿. 利用多属性剖面与双边滤波的高光谱影像分类[J]. 遥感信息, 2016, 31(6):104-109.
Wang K Z, Huang R. Hyperspectral image classification using extended multi-attribute profiles and guide bilateral filter[J]. Remote Sensing Information, 2016, 31(6):104-109.
[21] 罗建华, 李明奇, 郑泽忠, 等. 基于深度卷积神经网络的高光谱遥感图像分类[J]. 西华大学学报(自然科学版), 2017, 36(4):13-20.
Luo J H, Li M Q, Zheng Z Z, et al. Hyperspectral remote sensing images classification using a deep convolutional neural network model[J]. Journal of Xihua University (Natural Science Edition), 2017, 36(4):13-20.
[22] 付光远, 辜弘炀, 汪洪桥. 基于加权K近邻和卷积神经网络的高光谱图像分类[J]. 计算机应用研究, 2018, 35(8):2540-2543.
Fu G Y, Gu H Y, Wang H Q. Hyperspectral image classification based on weighted KNN and CNN[J]. Application Research of Computers. 2018, 35(8):2540-2543.
[1] 曲海成, 王雅萱, 申磊. 多感受野特征与空谱注意力结合的高光谱图像超分辨率算法[J]. 自然资源遥感, 2022, 34(1): 43-52.
[2] 韩彦岭, 崔鹏霞, 杨树瑚, 刘业锟, 王静, 张云. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2): 11-19.
[3] 夏炎, 黄亮, 陈朋弟. 模糊超像素分割算法的无人机影像烟株精细提取[J]. 国土资源遥感, 2021, 33(1): 115-122.
[4] 栗旭升, 刘玉锋, 陈冬花, 刘赛赛, 李虎. 结合图像特征的支持向量机高分一号云检测[J]. 国土资源遥感, 2020, 32(3): 55-62.
[5] 姚本佐, 何芳. 空谱特征分层融合的高光谱图像特征提取[J]. 国土资源遥感, 2019, 31(3): 59-64.
[6] 阿茹罕, 何芳, 王标标. 加权空-谱主成分分析的高光谱图像分类[J]. 国土资源遥感, 2019, 31(2): 17-23.
[7] 张兴航, 朱琳, 王威, 孟利山, 李小娟, 任应超. 基于对象的地裂缝分步提取方法研究与应用[J]. 国土资源遥感, 2019, 31(1): 87-94.
[8] 刘万军, 李天慧, 曲海成. 基于Fisher准则和TrAdaboost的高光谱相似样本分类算法[J]. 国土资源遥感, 2018, 30(4): 41-48.
[9] 魏英娟, 郑雄伟, 雷兵, 甘宇航. 基于样本模型的高分一号遥感影像云雾自动提取[J]. 国土资源遥感, 2017, 29(s1): 39-45.
[10] 张永梅, 杨飞, 许静. 改进的变长夹角链码算法及在码头识别中的应用[J]. 国土资源遥感, 2016, 28(4): 164-169.
[11] 李孚煜, 叶发茂. 基于SIFT的遥感图像配准技术综述[J]. 国土资源遥感, 2016, 28(2): 14-20.
[12] 刘鹏程. 基于水平集理论的海岸线轮廓特征提取[J]. 国土资源遥感, 2015, 27(2): 75-79.
[13] 常睿春, 王璐, 王茂芝. FastICA在高光谱遥感矿物信息提取中的应用[J]. 国土资源遥感, 2013, 25(4): 129-132.
[14] 李婷, 詹庆明, 喻亮. 基于地物特征提取的车载激光点云数据分类方法[J]. 国土资源遥感, 2012, 24(1): 17-21.
[15] 崔林林, 罗毅, 包安明. NWFE结合纹理特征的SVM土地覆被分类方法研究[J]. 国土资源遥感, 2012, 24(1): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发