Please wait a minute...
 
自然资源遥感  2023, Vol. 35 Issue (4): 1-8    DOI: 10.6046/zrzyyg.2022338
  综述 本期目录 | 过刊浏览 | 高级检索 |
日平均气温遥感估算方法综述
王岩1(), 汪利诚1, 武晋雯2,3()
1.沈阳建筑大学交通与测绘工程学院,沈阳 110168
2.中国气象局大气环境研究所,沈阳 110166
3.辽宁省农业气象灾害重点实验室,沈阳 110166
A review of the estimation methods for daily mean temperatures using remote sensing data
WANG Yan1(), WANG Licheng1, WU Jinwen2,3()
1. School of Transportation and Geomatics Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2. Institute of Atmospheric Environment, CMA, Shenyang 110166, China
3. Key Laboratory of Agrometeorological Disasters, Shenyang 110166, China
全文: PDF(864 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

日平均气温作为反映气候特征的重要指标,在城市热岛效应、农业生态环境等众多领域发挥着举足轻重的作用。气象站实测的日平均气温应用在大区域模型时,在空间上缺乏一定的代表性。相比之下,日平均气温遥感反演结果更能够满足大范围监测的需要,但同时也存在着精度和质量上的限制和挑战。首先,总结了几种目前广泛使用的日平均气温遥感估算算法,如多元线性回归方法、机器学习法和基于特征空间外推法; 其次,基于日平均气温遥感估算的原理和过程,系统分析了云、气溶胶等不确定因素的影响,并提出了相应的解决方案; 最后,对日平均气温遥感估算的发展趋势进行了展望,并指出了不同过境时刻影像融合和多源数据融合是提升云干扰下日平均气温遥感估算精度的重要途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王岩
汪利诚
武晋雯
关键词 日平均气温遥感反演估算方法云影响    
Abstract

Daily mean temperatures, as a primary indicator reflecting climatic characteristics, play a decisive role in monitoring urban heat island effects and agroecological environments. However, daily mean temperatures measured at meteorological stations lack spatial representativeness in regional-scale models. By contrast, the inversion results of daily mean temperatures using remote sensing data can better accommodate the large-scale monitoring needs, but with insufficient accuracy and quality. This study presented several common estimation methods for daily mean temperatures using remote sensing data, including multiple linear regression, machine learning, and feature space-based extrapolation. Then, based on the principle and process for estimation of daily mean temperatures using remote sensing data, this study systematically analyzed the effects of uncertainties such as clouds and aerosols and offered corresponding solutions. Finally, this study predicted the development trend of such estimation methods. Additionally, this study posited that image fusion and multi-source data fusion at different transit times can significantly improve the estimation accuracy under cloud interference.

Key wordsdaily mean temperature    inversion of remote sensing data    estimation method    cloud interference
收稿日期: 2022-08-16      出版日期: 2023-12-21
ZTFLH:  TP79  
基金资助:中青年科技创新人才支持计划项目“阴影校正及颜色纹理耦合对火烧迹地信息提取的影响研究”(RC210431);风云卫星应用先行计划二期项目“FY-3E微光成像仪在东北地区干旱和火点监测中的应用研究”(FY-APP-2021.0302);辽宁省民生科技计划项目“农业气象信息化防灾减灾关键技术集成与体系构建”(2021JH2/10200024);辽宁省教育厅科学研究项目“基于多源数据融合的建筑物三维重建关键问题研究”(lnjc202015);中央级公益性科研院所结余资金项目“基于深度学习和多源遥感数据的东北地区干旱监测研究”(2022YIAEJY3)
通讯作者: 武晋雯(1980-),女,硕士,研究员,主要从事生态环境领域的遥感应用研究。Email: pipi824@126.com
作者简介: 王岩(1979-),男,硕士,副教授,主要从事精密工程测量及多源数据的融合与应用研究。Email: wyan413@163.com
引用本文:   
王岩, 汪利诚, 武晋雯. 日平均气温遥感估算方法综述[J]. 自然资源遥感, 2023, 35(4): 1-8.
WANG Yan, WANG Licheng, WU Jinwen. A review of the estimation methods for daily mean temperatures using remote sensing data. Remote Sensing for Natural Resources, 2023, 35(4): 1-8.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2022338      或      https://www.gtzyyg.com/CN/Y2023/V35/I4/1
模型类型 算法类型 适用范围 文献来源
多元线性回归法 全子集回归方法 适合平原地区的日平均气温的估算,山区估算误差较大 姚永慧等[21];
Colombi等[22];
Zhang等[23];
Benali等[24];
Yang等[25];
Golkar等[26]
标准化回归系数方法
机器学习方法 随机森林 适用于山区,地形起伏大,复杂的地区日平均气温估算 Agathangelidis等[27]; Li等[28]; Moser等[29];
Zhang等[30]; Ho等[31]
支持向量机
神经网络
特征空间外推法 NDVI-LST梯形空间外推法 适用于中、高植被覆盖区域的日平均气温的估算 Sun等[32]; Zhu等[33];侯英雨等[34]
NDVI-LST三角形特征空间外推法
Tab.1  日平均气温遥感估算方法一览表
Fig.1  NDVI-Ts特征空间示意图[41]
特征空间模型 模型算法 算法精度 文献来源
TVX T s = a t , i + b t , i N D V I T t , i = a t , i + b t , i N D V I m a x T a , t = T m i n + ( T m a x - T m i n ) s i n [ π ( t + t d l 2 - 12 ) / ( t d l + 2 t T m a x ) ] RMSE为3.43 ℃
MAE为2.54 ℃
Zhu等[33]
NDVI-LST空间三角形和梯形 T L S T N D V I i , m a x = b 1 + c 1 + N D V I i T L S T N D V I i , m i n = b 2 + c 2 + N D V I i T a = T L S T N D V I i - T L S T N D V I i , m i n T L S T N D V I i , m a x - T L S T N D V I i , m i n ( T a , m a x - T a , m i n ) 稀疏植被覆盖区
MAE为1.5~1.8 ℃
中高植被覆盖区MAE为1.61 ℃
侯英雨等[34]
EVI-LST空间三角形和梯形 T a m e a n = 1 - E V I c 1 - E V I ( T s d a y - T s n i g h t ) + T s n i g h t 平原区RMSE为1.84 K
山区RMSE为2.34 K
高山区RMSE为2.45 K
Sun等[44]
Tab.2  特征空间外推估算气温方法一览表
[1] Karnieli A, Agam N, Pinker R T, et al. Use of NDVI and land surface temperature for drought assessment:Merits and limitations[J]. Journal of Climate, 2010, 23(3):618-633.
doi: 10.1175/2009JCLI2900.1
[2] Zhang Y, Feng R, Ji R, et al. Application of remote sensing technology in crop chilling injury monitoring[C]// 2010 Fourth International Conference on Genetic and Evolutionary Computing.IEEE, 2010:375-378.
[3] 裴亮, 王和斌, 延昊. 利用MODIS数据反演气温监测夏季高温热害[J]. 安徽农业科学, 2012, 40(8):4777-4779,4817.
Pei L, Wang H B, Yan H. Monitoring of summer high temperature by using MODIS data to estimate air temperature[J]. Journal of Anhui Agricultural Sciences, 2012, 40(8):4777-4779,4817.
[4] Zhang J, Yao F, Li B, et al. Progress in monitoring high-temperature damage to rice through satellite and ground-based optical remote sensing[J]. Science China Earth Sciences, 2011, 54(12):1801-1811.
doi: 10.1007/s11430-011-4210-5
[5] Green R M, Hay S I. The potential of pathfinder AVHRR data for providing surrogate climatic variables across Africa and Europe for epidemiological applications[J]. Remote Sensing of Environment, 2002, 79(2/3):166-175.
doi: 10.1016/S0034-4257(01)00270-X
[6] Kloog I, Chudnovsky A, Koutrakis P, et al. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts,USA[J]. Science of the Total Environment, 2012, 432:85-92.
doi: 10.1016/j.scitotenv.2012.05.095
[7] 李海楠, 朱丽杰, 李明倩, 等. 东北地区大豆冷害指标构建及变化特征[J]. 应用气象学报, 2021, 32(4):491-503.
Li H N, Zhu L J, Li M Q, et al. Construction of soybean chilling damage indicator and its evolution characteristics in Northeast China[J]. Journal of Applied Meteorological Science, 2021, 32(4):491-503.
[8] 王培娟, 霍治国, 陈鹏狮. 东北地区春玉米不同发育阶段热量指数时空特征[J]. 生态学杂志, 2018, 37(5):1450-1458.
Wang P J, Huo Z G, Chen P S. Spatiotemporal dynamics of heat index for spring maize at different developmental stages in Northeast China[J]. Chinese Journal of Ecology, 2018, 37(5):1450-1458.
[9] Zhu W, Lyu A, Jia S, et al. Development and evaluation of the MTVDI for soil moisture monitoring[J]. Journal of Geophysical Research:Atmospheres, 2017, 122(11):5533-5555.
doi: 10.1002/jgrd.v122.11
[10] Cristóbal J, Ninyerola M, Pons X. Modeling air temperature through a combination of remote sensing and GIS data[J]. Journal of Geophysical Research:Atmospheres, 2008, 133:D13106.
[11] 曹娟, 张朝, 张亮亮, 等. 基于Google Earth Engine和作物模型快速评估低温冷害对大豆生产的影响[J]. 地理学报, 2020, 75(9):1879-1892.
doi: 10.11821/dlxb202009005
Cao J, Zhang Z, Zhang L L, et al. Damage evaluation on soybean chilling injury based on Google Earth Engine(GEE) and crop growth model[J]. Acta Geographica Sinica, 2020, 75(9):1879-1892.
[12] 叶芝菡, 谢云, 刘宝元. 日平均气温的两种计算方法比较[J]. 北京师范大学学报(自然科学版), 2002, 38(3):421-426.
Ye Z H, Xie Y, Liu B Y. A comparison of mean daily temperature calculated by two methods[J]. Journal of Beijing Normal University (Natural Science), 2002, 38(3):421-426.
[13] 钱永兰, 吕厚荃, 张艳红. 基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J]. 气象与环境学报, 2010, 26(2):7-15.
Qian Y L, Lyu H Q, Zhang Y H. Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPLIN software[J]. Journal of Meteorology and Environment, 2010, 26(2):7-15.
[14] Neteler M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010, 2(1):333-351.
doi: 10.3390/rs1020333
[15] Duan S B, Li Z L, Zhao W, et al. Validation of Landsat land surface temperature product in the conterminous United States using in situ measurements from SURFRAD,ARM,and NDBC sites[J]. International Journal of Digital Earth, 2021, 14(5):640-660.
doi: 10.1080/17538947.2020.1862319
[16] 刘晓菲, 张朝, 帅嘉冰, 等. 黑龙江省冷害对水稻产量的影响[J]. 地理学报, 2012, 67(9):1223-1232.
Liu X F, Zhang Z, Shuai J B, et al. Effect of chilling injury on rice yield in Heilongjiang Province[J]. Acta Geographica Sinica, 2012, 67(9):1223-1232.
doi: 10.11821/xb201209007
[17] 胡列群, 武鹏飞, 李新建, 等. 基于ETM+影像的棉花低温冷害遥感监测方法研究[J]. 中国农学通报, 2011, 27(4):459-463.
Hu L Q, Wu P F, Li X J, et al. The remote sensing monitoring method analysis of cold damage cotton based on ETM+ images[J]. Chinese Agricultural Science Bulletin, 2011, 27(4):459-463.
doi: 10.11924/j.issn.1000-6850.2010-2799
[18] 覃志豪, Zhang M H, Arnon Karnieli. 用NOAA-AVHRR热通道数据演算地表温度的劈窗算法[J]. 国土资源遥感, 2001, 13(2):33-42.doi:10.6046/gtzyyg.2001.02.07.
Qin Z H, Zhang M H, Karnieli A. Split window algorithms for retrieving land surface temperature from NOAA-AVHRR data[J]. Remote Sensing for Land and Resources, 2001, 13(2):33-42.doi:10.6046/gtzyyg.2001.02.07.
[19] Wan Z, Zhang Y, Zhang Q, et al. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data[J]. Remote Sensing of Environment, 2002, 83(1/2):163-180.
doi: 10.1016/S0034-4257(02)00093-7
[20] 程元良, 吴骅, 李召良, 等. FY-3D MERSI-Ⅱ地表温度遥感反演与验证[J]. 遥感学报, 2021, 25(8):1792-1807.
Cheng Y L, Wu H, Li Z L, et al. Retrieval and validation of the land surface temperature from FY-3D MERSI-Ⅱ[J]. National Remote Sensing Bulletin, 2021, 25(8):1792-1807.
doi: 10.11834/jrs.20211302
[21] 姚永慧, 张百平, 韩芳. 基于Modis地表温度的横断山区气温估算及其时空规律分析[J]. 地理学报, 2011, 66(7):917-927.
Yao Y H, Zhang B P, Han F. MODIS-based air temperature estimation in the Hengduan Mountains and its spatio-temporal analysis[J]. Acta Geographica Sinica, 2011, 66(7):917-927.
doi: 10.11821/xb201107005
[22] Colombi A, Michele C, Pepe M, et al. Estimation of daily mean air temperature from modis lst in alpine areas[C]// European Association of Remote Sensing Laboratories Symposium, 2007.
[23] Zhang W, Huang Y, Yu Y, et al. Empirical models for estimating daily maximum,minimum and mean air temperatures with MODIS land surface temperatures[J]. International Journal of Remote Sensing, 2011, 32(24):9415-9440.
doi: 10.1080/01431161.2011.560622
[24] Benali A, Carvalho A C, Nunes J P, et al. Estimating air surface temperature in Portugal using MODIS LST data[J]. Remote Sensing of Environment, 2012, 124:108-121.
doi: 10.1016/j.rse.2012.04.024
[25] Yang Y, Cai W, Yang J. Evaluation of MODIS land surface temperature data to estimate near-surface air temperature in Northeast China[J]. Remote Sensing, 2017, 9(5):410.
doi: 10.3390/rs9050410
[26] Golkar F, Sabziparvar A A, Khanbilvardi R, et al. Estimation of instantaneous air temperature using remote sensing data[J]. International Journal of Remote Sensing, 2018, 39(1):258-275.
doi: 10.1080/01431161.2017.1382743
[27] Agathangelidis I, Cartalis C, Santamouris M. Estimation of air temperatures for the urban agglomeration of Athens with the use of satellite data[J]. Geoinformatics and Geostatistics:An Overview, 2016, 4(2):25-32.
[28] Li M, Im J, Beier C. Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest[J]. GIScience and Remote Sensing, 2013, 50(4):361-384.
doi: 10.1080/15481603.2013.819161
[29] Moser G, De Martino M, Serpico S B. Estimation of air surface temperature from remote sensing images and pixelwise modeling of the estimation uncertainty through support vector machines[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1):332-349.
doi: 10.1109/JSTARS.4609443
[30] Zhang H, Zhang F, Ye M, et al. Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(19):11425-11441.
[31] Ho H C, Knudby A, Sirovyak P, et al. Mapping maximum urban air temperature on hot summer days[J]. Remote Sensing of Environment, 2014, 154:38-45.
doi: 10.1016/j.rse.2014.08.012
[32] Sun H, Chen Y, Gong A, et al. Estimating mean air temperature using MODIS day and night land surface temperatures[J]. Theoretical and Applied Climatology, 2014, 118(1):81-92.
doi: 10.1007/s00704-013-1033-7
[33] Zhu W, Jia S, Lyu A. A time domain solution of the modified temperature vegetation dryness index (MTVDI) for continuous soil moisture monitoring[J]. Remote Sensing of Environment, 2017, 200:1-17.
doi: 10.1016/j.rse.2017.07.032
[34] 侯英雨, 张佳华, 延昊, 等. 利用卫星遥感资料估算区域尺度空气温度[J]. 气象, 2010, 36(4):75-79.
Hou Y Y, Zhang J H, Yan H, et al. Air temperature retrieval from remote sensing data at regional level[J]. Meteorological Monthly, 2010, 36(4):75-79.
[35] 张丽文, 黄敬峰, 王秀珍. 气温遥感估算方法研究综述[J]. 自然资源学报, 2014, 29(3):540-552.
doi: 10.11849/zrzyxb.2014.03.017
Zhang L W, Huang J F, Wang X Z. A review on air temperature estimation by satellite thermal infrared remote sensing[J]. Journal of Natural Resources, 2014, 29(3):540-552.
[36] Vancutsem C, Ceccato P, Dinku T, et al. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa[J]. Remote Sensing of Environment, 2010, 114(2):449-465.
doi: 10.1016/j.rse.2009.10.002
[37] Janatian N, Sadeghi M, Sanaeinejad S H, et al. A statistical framework for estimating air temperature using MODIS land surface temperature data[J]. International Journal of Climatology, 2017, 37(3):1181-1194.
doi: 10.1002/joc.2017.37.issue-3
[38] 祝善友, 张桂欣, 尹球, 等. 基于多源极轨气象卫星热红外数据的近地表气温反演研究[J]. 遥感技术与应用, 2009, 24(1):27-31.
Zhu S Y, Zhang G X, Yin Q, et al. The study on the retrieval of the air temperature based on multi-sources polar orbit meteorological satellite data[J]. Remote Sensing Technology and Application, 2009, 24(1):27-31.
[39] Xu Y, Knudby A, Ho H C. Estimating daily maximum air temperature from MODIS in British Columbia,Canada[J]. International Journal of Remote Sensing, 2014, 35(24):8108-8121.
doi: 10.1080/01431161.2014.978957
[40] 邢立亭, 李净, 焦文慧. 基于MODIS和随机森林的兰州市日最高气温和最低气温估算[J]. 干旱区研究, 2020, 37(3):689-695.
Xing L T, Li J, Jiao W H. Estimation of daily maximum and minimum temperature of Lanzhou City based on MODIS and random forest[J]. Arid Zone Research, 2020, 37(3):689-695.
[41] Prince S D, Goetz S J, Dubayah R O, et al. Inference of surface and air temperature,atmospheric precipitable water and vapor pressure deficit using Advanced Very High-Resolution Radiometer satellite observations:Comparison with field observations[J]. Journal of Hydrology, 1998, 212/213:230-249.
doi: 10.1016/S0022-1694(98)00210-8
[42] Zhu W, Lyu A, Jia S. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products[J]. Remote Sensing of Environment, 2013, 130:62-73.
doi: 10.1016/j.rse.2012.10.034
[43] Nemani R R, Running S W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data[J]. Journal of Applied Meteorology, 1989, 28(4):276-284.
doi: 10.1175/1520-0450(1989)028<0276:EORSRT>2.0.CO;2
[44] Sun L, Sun R, Li X, et al. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information[J]. Agricultural and Forest Meteorology, 2012, 166/167:175-187.
doi: 10.1016/j.agrformet.2012.07.015
[45] Bisht G, Bras R L. Estimation of net radiation from the MODIS data under all sky conditions:Southern Great Plains case study[J]. Remote Sensing of Environment, 2010, 114(7):1522-1534.
doi: 10.1016/j.rse.2010.02.007
[46] Zhu W, Lyu A, Jia S, et al. Retrievals of all-weather daytime air temperature from MODIS products[J]. Remote Sensing of Environment, 2017, 189:152-163.
doi: 10.1016/j.rse.2016.11.011
[47] Song C, Jia L, Menenti M. Retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature using MODIS LST and NDVI data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3):935-942.
doi: 10.1109/JSTARS.2013.2272053
[48] Zhou F C, Li Z L, Wu H, et al. Retrieving K-band instantaneous microwave land surface emissivity based on passive microwave brightness temperature and atmospheric precipitable water vapor data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12):5608-5617.
doi: 10.1109/JSTARS.4609443
[49] Zhang X, Zhou J, Liang S, et al. Estimation of 1-km all-weather remotely sensed land surface temperature based on reconstructed spatial-seamless satellite passive microwave brightness temperature and thermal infrared data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167:321-344.
doi: 10.1016/j.isprsjprs.2020.07.014
[50] Yu X, Guo X, Wu Z. Land surface temperature retrieval from Landsat8 TIRS:Comparison between radiative transfer equation-based method,split window algorithm and single channel method[J]. Remote Sensing, 2014, 6(10):9829-9852.
doi: 10.3390/rs6109829
[51] 宋挺, 段峥, 刘军志, 等. Landsat8数据地表温度反演算法对比[J]. 遥感学报, 2015, 19(3):451-464.
Song T, Duan Z, Liu J Z, et al. Comparison of four algorithms to retrieve land surface temperature using Landsat8 satellite[J]. Journal of Remote Sensing, 2015, 19(3):451-464.
[52] 刘超, 历华, 杜永明, 等. Himawari8 AHI数据地表温度反演的实用劈窗算法[J]. 遥感学报, 2017, 21(5):702-714.
Liu C, Li H, Du Y M, et al. Practical split-window algorithm for retrieving land surface temperature from Himawari8 AHI data[J]. Journal of Remote Sensing, 2017, 21(5):702-714.
[53] 刘元亮. 高分辨率气溶胶光学厚度反演及其与地表特征和热环境的相关关系研究[D]. 南京: 南京大学, 2016.
Liu Y L. Study on high resolution retrieval of aerosol optical depth and its correlation with land surface features and thermal environment[D]. Nanjing: Nanjing University, 2016.
[54] Sharma A, Bhattacharya A, Venkataraman C. Influence of aerosol radiative effects on surface temperature and snow melt in the Himalayan region[J]. The Science of the Total Environment, 2022, 810:151299.
doi: 10.1016/j.scitotenv.2021.151299
[55] Stofferahn E, Boybeyi Z. Investigation of aerosol effects on the Arctic surface temperature during the diurnal cycle:Part 2-Separating aerosol effects[J]. International Journal of Climatology, 2017, 37(s1):775-787.
doi: 10.1002/joc.2017.37.issue-S1
[56] Zhang R, Rong Y, Tian J, et al. A remote sensing method for estimating surface air temperature and surface vapor pressure on a regional scale[J]. Remote Sensing, 2015, 7(5):6005-6025.
doi: 10.3390/rs70506005
[1] 黄晓宇, 王雪梅, 卡吾恰提·白山. 基于Landsat8 OLI影像干旱区绿洲土壤含盐量反演[J]. 自然资源遥感, 2023, 35(1): 189-197.
[2] 范嘉智, 罗宇, 谭诗琪, 马雯, 张弘豪, 刘富来. 基于FY-3C/MWRI的湖南省地表温度遥感反演评价[J]. 国土资源遥感, 2021, 33(1): 249-255.
[3] 左家旗, 王泽根, 边金虎, 李爱农, 雷光斌, 张正健. 地表不透水面比例遥感反演研究综述[J]. 国土资源遥感, 2019, 31(3): 20-28.
[4] 李军, 董恒, 王祥, 游林. 基于最优插值的土壤含水量遥感反演缺失数据插补[J]. 国土资源遥感, 2018, 30(2): 45-52.
[5] 孔金玲, 杨晶, 孙晓明, 杨姝, 柳富田, 杜东. 多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例[J]. 国土资源遥感, 2016, 28(3): 130-137.
[6] 周亚敏, 张荣群, 马鸿元, 张健, 张小栓. 基于BP神经网络的盐湖矿物离子含量高光谱反演[J]. 国土资源遥感, 2016, 28(2): 34-40.
[7] 任哲, 陈怀亮, 王连喜, 李颖, 李琪. 利用交叉验证的小麦LAI反演模型研究[J]. 国土资源遥感, 2015, 27(4): 34-40.
[8] 鲍艳松, 毛飞, 闵锦忠, 王冬梅, 严婧. 基于FY-3B/MWRI数据的裸土区土壤湿度反演[J]. 国土资源遥感, 2014, 26(4): 131-137.
[9] 除多, 德吉央宗, 姬秋梅, 唐红. 西藏高原典型草地地上生物量遥感估算[J]. 国土资源遥感, 2013, 25(3): 43-50.
[10] 蔡蘅, 王结贵, 杨瑞霞, 李超, 吉玮, 王心源. 基于FCD模型的且末绿洲植被覆盖度时空变化分析[J]. 国土资源遥感, 2013, 25(2): 131-137.
[11] 魏伟, 任皓晨, 赵军, 王旭峰. 基于MODIS的ATI和TVI组合法反演石羊河流域土壤含水量[J]. 国土资源遥感, 2011, 23(2): 104-109.
[12] 孙庆先, 李茂堂, 路京选. 基于TM影像数据的五日生化需氧量浓度估计[J]. 国土资源遥感, 2009, 21(2): 82-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发